Spaces:
Build error
Build error
##!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import gradio as gr | |
import os | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
from segment_anything import SamPredictor, sam_model_registry | |
import torch | |
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler | |
import random | |
import spaces | |
mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth') | |
mobile_sam.eval() | |
mobile_predictor = SamPredictor(mobile_sam) | |
colors = [(255, 0, 0), (0, 255, 0)] | |
markers = [1, 5] | |
# - - - - - examples - - - - - # | |
image_examples = [ | |
["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, []], | |
] | |
# choose the base model here | |
base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE" | |
# base_model_path = "runwayml/stable-diffusion-v1-5" | |
# input brushnet ckpt path | |
brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt" | |
# input source image / mask image path and the text prompt | |
image_path="examples/brushnet/src/test_image.jpg" | |
mask_path="examples/brushnet/src/test_mask.jpg" | |
caption="A cake on the table." | |
# conditioning scale | |
paintingnet_conditioning_scale=1.0 | |
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16) | |
pipe = StableDiffusionBrushNetPipeline.from_pretrained( | |
base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False | |
) | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed or when using Torch 2.0. | |
# pipe.enable_xformers_memory_efficient_attention() | |
# memory optimization. | |
# pipe.enable_model_cpu_offload() | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |
def process(input_image, | |
original_image, | |
original_mask, | |
input_mask, | |
selected_points, | |
prompt, | |
negative_prompt, | |
blended, | |
invert_mask, | |
control_strength, | |
seed, | |
randomize_seed, | |
guidance_scale, | |
num_inference_steps): | |
if original_image is None: | |
raise gr.Error('Please upload the input image') | |
if (original_mask is None or len(selected_points)==0) and input_mask is None: | |
raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image") | |
# load example image | |
if isinstance(original_image, int): | |
image_name = image_examples[original_image][0] | |
original_image = cv2.imread(image_name) | |
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) | |
if input_mask is not None: | |
H,W=original_image.shape[:2] | |
original_mask = cv2.resize(input_mask, (W, H)) | |
else: | |
original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8) | |
if invert_mask: | |
original_mask=255-original_mask | |
mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis] | |
masked_image = original_image * (1-mask) | |
init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB") | |
mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB") | |
generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed) | |
image = pipe( | |
[prompt]*2, | |
init_image, | |
mask_image, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
brushnet_conditioning_scale=float(control_strength), | |
negative_prompt=[negative_prompt]*2, | |
).images | |
if blended: | |
if control_strength<1.0: | |
raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed') | |
blended_image=[] | |
# blur, you can adjust the parameters for better performance | |
mask = cv2.GaussianBlur(mask*255, (21, 21), 0)/255 | |
mask = mask[:,:,np.newaxis] | |
for image_i in image: | |
image_np=np.array(image_i) | |
image_pasted=original_image * (1-mask) + image_np*mask | |
image_pasted=image_pasted.astype(image_np.dtype) | |
blended_image.append(Image.fromarray(image_pasted)) | |
image=blended_image | |
return image | |
block = gr.Blocks( | |
theme=gr.themes.Soft( | |
radius_size=gr.themes.sizes.radius_none, | |
text_size=gr.themes.sizes.text_md | |
) | |
).queue() | |
with block: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML(f""" | |
<div style="text-align: center;"> | |
<h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<a href=""></a> | |
<a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a> | |
<a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a> | |
</div> | |
</br> | |
</div> | |
""") | |
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"): | |
with gr.Row(equal_height=True): | |
gr.Markdown(""" | |
- ⭐️ <b>step1: </b>Upload or select one image from Example | |
- ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change. | |
- ⭐️ <b>step3: </b>Input prompt for generating new contents | |
- ⭐️ <b>step4: </b>Click Run button | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Column(elem_id="Input"): | |
with gr.Row(): | |
with gr.Tabs(elem_classes=["feedback"]): | |
with gr.TabItem("Input Image"): | |
input_image = gr.Image(type="numpy", label="input",scale=2, height=640) | |
original_image = gr.State(value=None,label="index") | |
original_mask = gr.State(value=None) | |
selected_points = gr.State([],label="select points") | |
with gr.Row(elem_id="Seg"): | |
radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2) | |
undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1) | |
prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
max_lines=5, | |
placeholder="Please input your negative prompt", | |
value='ugly, low quality',lines=1 | |
) | |
with gr.Group(): | |
with gr.Row(): | |
blending = gr.Checkbox(label="Blurred Blending", value=False) | |
invert_mask = gr.Checkbox(label="Invert Mask", value=True) | |
run_button = gr.Button("Run",elem_id="btn") | |
with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"): | |
control_strength = gr.Slider( | |
label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01 | |
) | |
with gr.Group(): | |
seed = gr.Slider( | |
label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
with gr.Group(): | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1, | |
maximum=12, | |
step=0.1, | |
value=12, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=50, | |
) | |
with gr.Row(elem_id="Image"): | |
with gr.Tabs(elem_classes=["feedback1"]): | |
with gr.TabItem("User-specified Mask Image (Optional)"): | |
input_mask = gr.Image(type="numpy", label="Mask Image", height=640) | |
with gr.Column(): | |
with gr.Tabs(elem_classes=["feedback"]): | |
with gr.TabItem("Outputs"): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True) | |
with gr.Row(): | |
def process_example(input_image, prompt, input_mask, original_image, selected_points): # | |
return input_image, prompt, input_mask, original_image, [] | |
example = gr.Examples( | |
label="Input Example", | |
examples=image_examples, | |
inputs=[input_image, prompt, input_mask, original_image, selected_points], | |
outputs=[input_image, prompt, input_mask, original_image, selected_points], | |
fn=process_example, | |
run_on_click=True, | |
examples_per_page=10 | |
) | |
# once user upload an image, the original image is stored in `original_image` | |
def store_img(img): | |
# image upload is too slow | |
if min(img.shape[0], img.shape[1]) > 512: | |
img = resize_image(img, 512) | |
if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0: | |
raise gr.Error('image aspect ratio cannot be larger than 2.0') | |
return img, img, [], None # when new image is uploaded, `selected_points` should be empty | |
input_image.upload( | |
store_img, | |
[input_image], | |
[input_image, original_image, selected_points] | |
) | |
# user click the image to get points, and show the points on the image | |
def segmentation(img, sel_pix): | |
# online show seg mask | |
points = [] | |
labels = [] | |
for p, l in sel_pix: | |
points.append(p) | |
labels.append(l) | |
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img)) | |
with torch.no_grad(): | |
masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False) | |
output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255 | |
for i in range(3): | |
output_mask[masks[0] == True, i] = 0.0 | |
mask_all = np.ones((masks.shape[1], masks.shape[2], 3)) | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
for i in range(3): | |
mask_all[masks[0] == True, i] = color_mask[i] | |
masked_img = img / 255 * 0.3 + mask_all * 0.7 | |
masked_img = masked_img*255 | |
## draw points | |
for point, label in sel_pix: | |
cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5) | |
return masked_img, output_mask | |
def get_point(img, sel_pix, point_type, evt: gr.SelectData): | |
if point_type == 'foreground': | |
sel_pix.append((evt.index, 1)) # append the foreground_point | |
elif point_type == 'background': | |
sel_pix.append((evt.index, 0)) # append the background_point | |
else: | |
sel_pix.append((evt.index, 1)) # default foreground_point | |
if isinstance(img, int): | |
image_name = image_examples[img][0] | |
img = cv2.imread(image_name) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
# online show seg mask | |
masked_img, output_mask = segmentation(img, sel_pix) | |
return masked_img.astype(np.uint8), output_mask | |
input_image.select( | |
get_point, | |
[original_image, selected_points, radio], | |
[input_image, original_mask], | |
) | |
# undo the selected point | |
def undo_points(orig_img, sel_pix): | |
# draw points | |
output_mask = None | |
if len(sel_pix) != 0: | |
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples | |
temp = cv2.imread(image_examples[orig_img][0]) | |
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB) | |
else: | |
temp = orig_img.copy() | |
sel_pix.pop() | |
# online show seg mask | |
if len(sel_pix) !=0: | |
temp, output_mask = segmentation(temp, sel_pix) | |
return temp.astype(np.uint8), output_mask | |
else: | |
gr.Error("Nothing to Undo") | |
undo_button.click( | |
undo_points, | |
[original_image, selected_points], | |
[input_image, original_mask] | |
) | |
ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch() |