.gitattributes CHANGED
@@ -1,6 +1,4 @@
1
  *.webp filter=lfs diff=lfs merge=lfs -text
2
- *.gif filter=lfs diff=lfs merge=lfs -text
3
- *.png filter=lfs diff=lfs merge=lfs -text
4
  *.7z filter=lfs diff=lfs merge=lfs -text
5
  *.arrow filter=lfs diff=lfs merge=lfs -text
6
  *.bin filter=lfs diff=lfs merge=lfs -text
 
1
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
2
  *.7z filter=lfs diff=lfs merge=lfs -text
3
  *.arrow filter=lfs diff=lfs merge=lfs -text
4
  *.bin filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -12,10 +12,12 @@ library_name: diffusers
12
  pipeline_tag: text-to-video
13
  datasets:
14
  - TempoFunk/tempofunk-sdance
15
- - TempoFunk/small
16
  models:
17
  - TempoFunk/makeavid-sd-jax
18
  - runwayml/stable-diffusion-v1-5
19
  tags:
20
  - jax-diffusers-event
21
  ---
 
 
 
12
  pipeline_tag: text-to-video
13
  datasets:
14
  - TempoFunk/tempofunk-sdance
15
+ - TempoFunk/tempofunk-m
16
  models:
17
  - TempoFunk/makeavid-sd-jax
18
  - runwayml/stable-diffusion-v1-5
19
  tags:
20
  - jax-diffusers-event
21
  ---
22
+
23
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,6 +1,5 @@
1
 
2
  import os
3
- import json
4
  from io import BytesIO
5
  import base64
6
  from functools import partial
@@ -8,88 +7,65 @@ from functools import partial
8
  from PIL import Image, ImageOps
9
  import gradio as gr
10
 
11
- from makeavid_sd.inference import (
12
- InferenceUNetPseudo3D,
13
- jnp,
14
- SCHEDULERS
15
- )
16
 
17
  print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet'))
18
  print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet'))
19
 
 
 
20
  _seen_compilations = set()
21
 
22
  _model = InferenceUNetPseudo3D(
23
  model_path = 'TempoFunk/makeavid-sd-jax',
 
24
  dtype = jnp.float16,
25
  hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
26
  )
27
 
28
- import datetime
29
- print(datetime.datetime.now(datetime.timezone.utc).isoformat())
30
-
31
  if _model.failed != False:
32
  trace = f'```{_model.failed}```'
33
  with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
34
  exception = gr.Markdown(trace)
35
- demo.launch()
36
-
37
- _examples = []
38
- _expath = 'examples'
39
- for x in sorted(os.listdir(_expath)):
40
- with open(os.path.join(_expath, x, 'params.json'), 'r') as f:
41
- ex = json.load(f)
42
- ex['image_input'] = None
43
- if os.path.isfile(os.path.join(_expath, x, 'input.png')):
44
- ex['image_input'] = os.path.join(_expath, x, 'input.png')
45
- ex['image_output'] = os.path.join(_expath, x, 'output.gif')
46
- _examples.append(ex)
47
 
48
-
49
- _output_formats = (
50
- 'webp', 'gif'
51
- )
52
 
53
  # gradio is illiterate. type hints make it go poopoo in pantsu.
54
  def generate(
55
  prompt = 'An elderly man having a great time in the park.',
56
  neg_prompt = '',
57
- hint_image = None,
58
  inference_steps = 20,
59
- cfg = 15.0,
60
- cfg_image = 9.0,
61
  seed = 0,
62
- fps = 12,
63
  num_frames = 24,
64
  height = 512,
65
- width = 512,
66
- scheduler_type = 'dpm',
67
- output_format = 'gif'
68
  ) -> str:
69
- num_frames = min(24, max(2, int(num_frames)))
70
- inference_steps = min(60, max(2, int(inference_steps)))
71
- height = min(576, max(256, int(height)))
72
- width = min(576, max(256, int(width)))
73
- height = (height // 64) * 64
74
- width = (width // 64) * 64
75
- cfg = max(cfg, 1.0)
76
- cfg_image = max(cfg_image, 1.0)
77
- fps = min(1000, max(1, int(fps)))
78
- seed = min(2**32-2, int(seed))
79
  if seed < 0:
80
  seed = -seed
 
 
 
 
 
 
 
81
  if hint_image is not None:
82
  if hint_image.mode != 'RGB':
83
  hint_image = hint_image.convert('RGB')
84
  if hint_image.size != (width, height):
85
  hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS)
86
- scheduler_type = scheduler_type.lower()
87
- if scheduler_type not in SCHEDULERS:
88
- scheduler_type = 'dpm'
89
- output_format = output_format.lower()
90
- if output_format not in _output_formats:
91
- output_format = 'gif'
92
- mask_image = None
93
  images = _model.generate(
94
  prompt = [prompt] * _model.device_count,
95
  neg_prompt = neg_prompt,
@@ -97,44 +73,56 @@ def generate(
97
  mask_image = mask_image,
98
  inference_steps = inference_steps,
99
  cfg = cfg,
100
- cfg_image = cfg_image,
101
  height = height,
102
  width = width,
103
  num_frames = num_frames,
104
- seed = seed,
105
- scheduler_type = scheduler_type
106
  )
107
  _seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames))
108
- with BytesIO() as buffer:
109
- images[1].save(
110
- buffer,
111
- format = output_format,
112
- save_all = True,
113
- append_images = images[2:],
114
- loop = 0,
115
- duration = round(1000 / fps),
116
- allow_mixed = True,
117
- optimize = True
118
- )
119
- data = f'data:image/{output_format};base64,' + base64.b64encode(buffer.getvalue()).decode()
120
- with BytesIO() as buffer:
121
- images[-1].save(buffer, format = 'png', optimize = True)
122
- last_data = f'data:image/png;base64,' + base64.b64encode(buffer.getvalue()).decode()
123
- with BytesIO() as buffer:
124
- images[0].save(buffer, format ='png', optimize = True)
125
- first_data = f'data:image/png;base64,' + base64.b64encode(buffer.getvalue()).decode()
126
- return data, last_data, first_data
127
 
128
- def check_if_compiled(hint_image, inference_steps, height, width, num_frames, scheduler_type, message):
129
  height = int(height)
130
  width = int(width)
131
- inference_steps = int(inference_steps)
132
- height = (height // 64) * 64
133
- width = (width // 64) * 64
134
- if (hint_image is None, inference_steps, height, width, num_frames, scheduler_type) in _seen_compilations:
135
  return ''
136
  else:
137
- return message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
  with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
140
  variant = 'panel'
@@ -143,67 +131,60 @@ with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled =
143
  intro1 = gr.Markdown("""
144
  # Make-A-Video Stable Diffusion JAX
145
 
146
- We have extended a pretrained latent-diffusion inpainting image generation model with **temporal convolutions and attention**.
147
- We guide the video generation with a hint image by taking advantage of the extra 5 input channels of the inpainting model.
148
- In this demo the hint image can be given by the user, otherwise it is generated by an generative image model.
149
 
150
- The temporal layers are a port of [Make-A-Video PyTorch](https://github.com/lucidrains/make-a-video-pytorch) to [JAX](https://github.com/google/jax) utilizing [FLAX](https://github.com/google/flax).
151
- The convolution is pseudo 3D and seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D.
152
- Temporal attention is purely self attention and also separately attends to time.
153
 
154
  Only the new temporal layers have been fine tuned on a dataset of videos themed around dance.
155
- The model has been trained for 80 epochs on a dataset of 18,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample.
156
 
157
- Model: [TempoFunk/makeavid-sd-jax](https://huggingface.co/TempoFunk/makeavid-sd-jax)
158
- Datasets: [TempoFunk/tempofunk-sdance](https://huggingface.co/datasets/TempoFunk/tempofunk-sdance), [TempoFunk/small](https://huggingface.co/datasets/TempoFunk/small)
159
 
160
- Model implementation and training code can be found at <https://github.com/lopho/makeavid-sd-tpu> (WIP)
161
  """)
162
  with gr.Column():
163
  intro3 = gr.Markdown("""
164
  **Please be patient. The model might have to compile with current parameters.**
165
 
166
  This can take up to 5 minutes on the first run, and 2-3 minutes on later runs.
167
- The compilation will be cached and later runs with the same parameters
168
  will be much faster.
169
 
170
  Changes to the following parameters require the model to compile
171
  - Number of frames
172
  - Width & Height
173
- - Inference steps
174
  - Input image vs. no input image
175
- - Noise scheduler type
176
-
177
- If you encounter any issues, please report them here: [Space discussions](https://huggingface.co/spaces/TempoFunk/makeavid-sd-jax/discussions) (or DM [@lopho](https://twitter.com/lopho))
178
-
179
- <small>Leave a ❤️ like if you like. Consider it a dopamine donation at no cost.</small>
180
  """)
181
 
182
  with gr.Row(variant = variant):
183
- with gr.Column():
184
  with gr.Row():
185
  #cancel_button = gr.Button(value = 'Cancel')
186
  submit_button = gr.Button(value = 'Make A Video', variant = 'primary')
187
  prompt_input = gr.Textbox(
188
  label = 'Prompt',
189
- value = 'They are dancing in the club but everybody is a 3d cg hairy monster wearing a hairy costume.',
190
  interactive = True
191
  )
192
  neg_prompt_input = gr.Textbox(
193
  label = 'Negative prompt (optional)',
194
- value = 'monochrome, saturated',
195
  interactive = True
196
  )
197
- cfg_input = gr.Slider(
198
- label = 'Guidance scale video',
199
- minimum = 1.0,
200
- maximum = 20.0,
201
- step = 0.1,
202
- value = 15.0,
203
- interactive = True
204
  )
205
- cfg_image_input = gr.Slider(
206
- label = 'Guidance scale hint (no effect with input image)',
207
  minimum = 1.0,
208
  maximum = 20.0,
209
  step = 0.1,
@@ -217,152 +198,89 @@ with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled =
217
  precision = 0
218
  )
219
  image_input = gr.Image(
220
- label = 'Hint image (optional)',
221
  interactive = True,
222
  image_mode = 'RGB',
223
  type = 'pil',
224
  optional = True,
225
- source = 'upload'
226
- )
227
- inference_steps_input = gr.Slider(
228
- label = 'Steps',
229
- minimum = 2,
230
- maximum = 60,
231
- value = 20,
232
- step = 1,
233
- interactive = True
234
  )
235
  num_frames_input = gr.Slider(
236
  label = 'Number of frames to generate',
237
- minimum = 2,
238
  maximum = 24,
239
  step = 1,
240
- value = 24,
241
- interactive = True
242
  )
243
  width_input = gr.Slider(
244
  label = 'Width',
245
- minimum = 256,
246
- maximum = 576,
247
- step = 64,
248
- value = 512,
249
- interactive = True
250
  )
251
  height_input = gr.Slider(
252
  label = 'Height',
253
- minimum = 256,
254
- maximum = 576,
255
- step = 64,
256
- value = 512,
257
- interactive = True
258
  )
259
- scheduler_input = gr.Dropdown(
260
- label = 'Noise scheduler',
261
- choices = list(SCHEDULERS.keys()),
262
- value = 'dpm',
263
- interactive = True
 
264
  )
265
- with gr.Row():
266
- fps_input = gr.Slider(
267
- label = 'Output FPS',
268
- minimum = 1,
269
- maximum = 1000,
270
- step = 1,
271
- value = 12,
272
- interactive = True
273
- )
274
- output_format = gr.Dropdown(
275
- label = 'Output format',
276
- choices = _output_formats,
277
- value = 'gif',
278
- interactive = True
279
- )
280
- with gr.Column():
281
- #will_trigger = gr.Markdown('')
282
- patience = gr.Markdown('**Please be patient. The model might have to compile with current parameters.**')
283
  image_output = gr.Image(
284
  label = 'Output',
285
- value = 'example.gif',
286
  interactive = False
287
  )
288
- tips = gr.Markdown('🤫 *Secret tip*: try using the last frame as input for the next generation.')
289
- with gr.Row():
290
- last_frame_output = gr.Image(
291
- label = 'Last frame',
292
- interactive = False
293
- )
294
- first_frame_output = gr.Image(
295
- label = 'Initial frame',
296
- interactive = False
297
- )
298
- examples_lst = []
299
- for x in _examples:
300
- examples_lst.append([
301
- x['image_output'],
302
- x['prompt'],
303
- x['neg_prompt'],
304
- x['image_input'],
305
- x['cfg'],
306
- x['cfg_image'],
307
- x['seed'],
308
- x['fps'],
309
- x['steps'],
310
- x['scheduler'],
311
- x['num_frames'],
312
- x['height'],
313
- x['width'],
314
- x['format']
315
- ])
316
- examples = gr.Examples(
317
- examples = examples_lst,
318
- inputs = [
319
- image_output,
320
- prompt_input,
321
- neg_prompt_input,
322
- image_input,
323
- cfg_input,
324
- cfg_image_input,
325
- seed_input,
326
- fps_input,
327
- inference_steps_input,
328
- scheduler_input,
329
- num_frames_input,
330
- height_input,
331
- width_input,
332
- output_format
333
- ],
334
- postprocess = False
335
- )
336
- #trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input, scheduler_input ]
337
- #trigger_check_fun = partial(check_if_compiled, message = 'Current parameters need compilation.')
338
- #height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
339
- #width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
340
- #num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
341
- #image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
342
- #inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
343
- #scheduler_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
344
- submit_button.click(
345
- fn = generate,
346
- inputs = [
347
- prompt_input,
348
- neg_prompt_input,
349
- image_input,
350
- inference_steps_input,
351
- cfg_input,
352
- cfg_image_input,
353
- seed_input,
354
- fps_input,
355
- num_frames_input,
356
- height_input,
357
- width_input,
358
- scheduler_input,
359
- output_format
360
- ],
361
- outputs = [ image_output, last_frame_output, first_frame_output ],
362
- postprocess = False
363
  )
364
  #cancel_button.click(fn = lambda: None, cancels = ev)
365
 
366
- demo.queue(concurrency_count = 1, max_size = 8, api_open = True)
367
- demo.launch(show_api = True)
368
 
 
1
 
2
  import os
 
3
  from io import BytesIO
4
  import base64
5
  from functools import partial
 
7
  from PIL import Image, ImageOps
8
  import gradio as gr
9
 
10
+ from makeavid_sd.inference import InferenceUNetPseudo3D, FlaxDPMSolverMultistepScheduler, jnp
 
 
 
 
11
 
12
  print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet'))
13
  print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet'))
14
 
15
+ _preheat: bool = False
16
+
17
  _seen_compilations = set()
18
 
19
  _model = InferenceUNetPseudo3D(
20
  model_path = 'TempoFunk/makeavid-sd-jax',
21
+ scheduler_cls = FlaxDPMSolverMultistepScheduler,
22
  dtype = jnp.float16,
23
  hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
24
  )
25
 
 
 
 
26
  if _model.failed != False:
27
  trace = f'```{_model.failed}```'
28
  with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
29
  exception = gr.Markdown(trace)
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ demo.launch()
 
 
 
32
 
33
  # gradio is illiterate. type hints make it go poopoo in pantsu.
34
  def generate(
35
  prompt = 'An elderly man having a great time in the park.',
36
  neg_prompt = '',
37
+ image = { 'image': None, 'mask': None },
38
  inference_steps = 20,
39
+ cfg = 12.0,
 
40
  seed = 0,
41
+ fps = 24,
42
  num_frames = 24,
43
  height = 512,
44
+ width = 512
 
 
45
  ) -> str:
46
+ height = int((height//32)*32)
47
+ width = int((width//32)*32)
48
+ num_frames = int(num_frames)
49
+ seed = int(seed)
 
 
 
 
 
 
50
  if seed < 0:
51
  seed = -seed
52
+ inference_steps = int(inference_steps)
53
+ if image is not None:
54
+ hint_image = image['image']
55
+ mask_image = image['mask']
56
+ else:
57
+ hint_image = None
58
+ mask_image = None
59
  if hint_image is not None:
60
  if hint_image.mode != 'RGB':
61
  hint_image = hint_image.convert('RGB')
62
  if hint_image.size != (width, height):
63
  hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS)
64
+ if mask_image is not None:
65
+ if mask_image.mode != 'L':
66
+ mask_image = mask_image.convert('L')
67
+ if mask_image.size != (width, height):
68
+ mask_image = ImageOps.fit(mask_image, (width, height), method = Image.Resampling.LANCZOS)
 
 
69
  images = _model.generate(
70
  prompt = [prompt] * _model.device_count,
71
  neg_prompt = neg_prompt,
 
73
  mask_image = mask_image,
74
  inference_steps = inference_steps,
75
  cfg = cfg,
 
76
  height = height,
77
  width = width,
78
  num_frames = num_frames,
79
+ seed = seed
 
80
  )
81
  _seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames))
82
+ buffer = BytesIO()
83
+ images[0].save(
84
+ buffer,
85
+ format = 'webp',
86
+ save_all = True,
87
+ append_images = images[1:],
88
+ loop = 0,
89
+ duration = round(1000 / fps),
90
+ allow_mixed = True
91
+ )
92
+ data = base64.b64encode(buffer.getvalue()).decode()
93
+ data = 'data:image/webp;base64,' + data
94
+ buffer.close()
95
+ return data
 
 
 
 
 
96
 
97
+ def check_if_compiled(image, inference_steps, height, width, num_frames, message):
98
  height = int(height)
99
  width = int(width)
100
+ hint_image = None if image is None else image['image']
101
+ if (hint_image is None, inference_steps, height, width, num_frames) in _seen_compilations:
 
 
102
  return ''
103
  else:
104
+ return f"""{message}"""
105
+
106
+ if _preheat:
107
+ print('\npreheating the oven')
108
+ generate(
109
+ prompt = 'preheating the oven',
110
+ neg_prompt = '',
111
+ image = { 'image': None, 'mask': None },
112
+ inference_steps = 20,
113
+ cfg = 12.0,
114
+ seed = 0
115
+ )
116
+ print('Entertaining the guests with sailor songs played on an old piano.')
117
+ dada = generate(
118
+ prompt = 'Entertaining the guests with sailor songs played on an old harmonium.',
119
+ neg_prompt = '',
120
+ image = { 'image': Image.new('RGB', size = (512, 512), color = (0, 0, 0)), 'mask': None },
121
+ inference_steps = 20,
122
+ cfg = 12.0,
123
+ seed = 0
124
+ )
125
+ print('dinner is ready\n')
126
 
127
  with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
128
  variant = 'panel'
 
131
  intro1 = gr.Markdown("""
132
  # Make-A-Video Stable Diffusion JAX
133
 
134
+ We have extended a pretrained LDM inpainting image generation model with temporal convolutions and attention.
135
+ We take advantage of the extra 5 input channels of the inpaint model to guide the video generation with a hint image and mask.
136
+ The hint image can be given by the user, otherwise it is generated by an generative image model.
137
 
138
+ The temporal convolution and attention is a port of [Make-A-Video Pytorch](https://github.com/lucidrains/make-a-video-pytorch/blob/main/make_a_video_pytorch) to FLAX.
139
+ It is a pseudo 3D convolution that seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D.
140
+ Temporal attention is purely self attention and also separately attends to time and space.
141
 
142
  Only the new temporal layers have been fine tuned on a dataset of videos themed around dance.
143
+ The model has been trained for 60 epochs on a dataset of 10,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample.
144
 
145
+ See model and dataset links in the metadata.
 
146
 
147
+ Model implementation and training code can be found at [https://github.com/lopho/makeavid-sd-tpu](https://github.com/lopho/makeavid-sd-tpu)
148
  """)
149
  with gr.Column():
150
  intro3 = gr.Markdown("""
151
  **Please be patient. The model might have to compile with current parameters.**
152
 
153
  This can take up to 5 minutes on the first run, and 2-3 minutes on later runs.
154
+ The compilation will be cached and consecutive runs with the same parameters
155
  will be much faster.
156
 
157
  Changes to the following parameters require the model to compile
158
  - Number of frames
159
  - Width & Height
160
+ - Steps
161
  - Input image vs. no input image
 
 
 
 
 
162
  """)
163
 
164
  with gr.Row(variant = variant):
165
+ with gr.Column(variant = variant):
166
  with gr.Row():
167
  #cancel_button = gr.Button(value = 'Cancel')
168
  submit_button = gr.Button(value = 'Make A Video', variant = 'primary')
169
  prompt_input = gr.Textbox(
170
  label = 'Prompt',
171
+ value = 'They are dancing in the club while sweat drips from the ceiling.',
172
  interactive = True
173
  )
174
  neg_prompt_input = gr.Textbox(
175
  label = 'Negative prompt (optional)',
176
+ value = '',
177
  interactive = True
178
  )
179
+ inference_steps_input = gr.Slider(
180
+ label = 'Steps',
181
+ minimum = 2,
182
+ maximum = 100,
183
+ value = 20,
184
+ step = 1
 
185
  )
186
+ cfg_input = gr.Slider(
187
+ label = 'Guidance scale',
188
  minimum = 1.0,
189
  maximum = 20.0,
190
  step = 0.1,
 
198
  precision = 0
199
  )
200
  image_input = gr.Image(
201
+ label = 'Input image (optional)',
202
  interactive = True,
203
  image_mode = 'RGB',
204
  type = 'pil',
205
  optional = True,
206
+ source = 'upload',
207
+ tool = 'sketch'
 
 
 
 
 
 
 
208
  )
209
  num_frames_input = gr.Slider(
210
  label = 'Number of frames to generate',
211
+ minimum = 1,
212
  maximum = 24,
213
  step = 1,
214
+ value = 24
 
215
  )
216
  width_input = gr.Slider(
217
  label = 'Width',
218
+ minimum = 64,
219
+ maximum = 512,
220
+ step = 32,
221
+ value = 448
 
222
  )
223
  height_input = gr.Slider(
224
  label = 'Height',
225
+ minimum = 64,
226
+ maximum = 512,
227
+ step = 32,
228
+ value = 448
 
229
  )
230
+ fps_input = gr.Slider(
231
+ label = 'Output FPS',
232
+ minimum = 1,
233
+ maximum = 1000,
234
+ step = 1,
235
+ value = 12
236
  )
237
+ with gr.Column(variant = variant):
238
+ #no_gpu = gr.Markdown('**Until a GPU is assigned expect extremely long runtimes up to 1h+**')
239
+ will_trigger = gr.Markdown('')
240
+ patience = gr.Markdown('')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
  image_output = gr.Image(
242
  label = 'Output',
243
+ value = 'example.webp',
244
  interactive = False
245
  )
246
+ trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input ]
247
+ trigger_check_fun = partial(check_if_compiled, message = 'Current parameters will trigger compilation.')
248
+ height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
249
+ width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
250
+ num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
251
+ image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
252
+ inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
253
+ will_trigger.value = trigger_check_fun(image_input.value, inference_steps_input.value, height_input.value, width_input.value, num_frames_input.value)
254
+ ev = submit_button.click(
255
+ fn = partial(
256
+ check_if_compiled,
257
+ message = 'Please be patient. The model has to be compiled with current parameters.'
258
+ ),
259
+ inputs = trigger_inputs,
260
+ outputs = patience
261
+ ).then(
262
+ fn = generate,
263
+ inputs = [
264
+ prompt_input,
265
+ neg_prompt_input,
266
+ image_input,
267
+ inference_steps_input,
268
+ cfg_input,
269
+ seed_input,
270
+ fps_input,
271
+ num_frames_input,
272
+ height_input,
273
+ width_input
274
+ ],
275
+ outputs = image_output,
276
+ postprocess = False
277
+ ).then(
278
+ fn = trigger_check_fun,
279
+ inputs = trigger_inputs,
280
+ outputs = will_trigger
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
  )
282
  #cancel_button.click(fn = lambda: None, cancels = ev)
283
 
284
+ demo.queue(concurrency_count = 1, max_size = 32)
285
+ demo.launch()
286
 
example.gif → example.webp RENAMED
File without changes
examples/example_01_barbarian/input.png DELETED

Git LFS Details

  • SHA256: 87c4d10eb4e1bfa8f09657ec0d85de66052e34c1801b7b21e1cfd4123504b42b
  • Pointer size: 131 Bytes
  • Size of remote file: 471 kB
examples/example_01_barbarian/output.gif DELETED

Git LFS Details

  • SHA256: b9d3fb7269244fe2e60bfe5a1104e4b5ec6c9e322b371573d8adacba017b594d
  • Pointer size: 132 Bytes
  • Size of remote file: 5.33 MB
examples/example_01_barbarian/params.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "prompt": "he is dancing as minotaur dancer wearing a fur armor water in a dark cave, john cena, fantasy, barbarian",
3
- "neg_prompt": "",
4
- "cfg": 15,
5
- "cfg_image": 9,
6
- "seed": 1,
7
- "steps": 20,
8
- "width": 512,
9
- "height": 512,
10
- "scheduler": "dpm",
11
- "fps": 20,
12
- "format": "gif",
13
- "num_frames": 24
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/example_02_zombies/output.gif DELETED

Git LFS Details

  • SHA256: f31690b537f0f45dda16c16281a7bfb730e2f431825fe0b5f5db6f0b9626b388
  • Pointer size: 132 Bytes
  • Size of remote file: 4.39 MB
examples/example_02_zombies/params.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "prompt": "Group of scary zombies dancing. Halloween concept.",
3
- "neg_prompt": "monochrome",
4
- "cfg": 15,
5
- "cfg_image": 15,
6
- "seed": 0,
7
- "steps": 20,
8
- "width": 512,
9
- "height": 512,
10
- "scheduler": "dpm",
11
- "fps": 20,
12
- "format": "gif",
13
- "num_frames": 24
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/example_03_astronaut/output.gif DELETED

Git LFS Details

  • SHA256: d849e387f15d15ba192eba4ffd11613fb70c19a23a2df4df47cee2d1cd049695
  • Pointer size: 132 Bytes
  • Size of remote file: 5.36 MB
examples/example_03_astronaut/params.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "prompt": "Astronaut performing shuffle dance moves on a Moon surface. Stanley Kubrick.",
3
- "neg_prompt": "",
4
- "cfg": 15,
5
- "cfg_image": 15,
6
- "seed": 0,
7
- "steps": 20,
8
- "width": 512,
9
- "height": 512,
10
- "scheduler": "dpm",
11
- "fps": 20,
12
- "format": "gif",
13
- "num_frames": 24
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/example_04_furry_moster/output.gif DELETED

Git LFS Details

  • SHA256: d5cd05f2a45e4b0b3fa5465d8a8203fad029246071163787cb602e8d630aa70d
  • Pointer size: 132 Bytes
  • Size of remote file: 4.33 MB
examples/example_04_furry_moster/params.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "prompt": "They are dancing in the club but everybody is a 3d cg hairy monster wearing a hairy costume.",
3
- "neg_prompt": "monochrome, saturated",
4
- "cfg": 15,
5
- "cfg_image": 15,
6
- "seed": 0,
7
- "steps": 20,
8
- "width": 512,
9
- "height": 512,
10
- "scheduler": "dpm",
11
- "fps": 12,
12
- "format": "gif",
13
- "num_frames": 24
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/example_05_people/input.png DELETED

Git LFS Details

  • SHA256: 62ab7da78435c4284915c836986d3d4c72610a28b5ca5d971bccb9a639686b43
  • Pointer size: 131 Bytes
  • Size of remote file: 408 kB
examples/example_05_people/output.gif DELETED

Git LFS Details

  • SHA256: 0be83e354696c3c113d2053ec00b1ca4a7a5d797ffa58310e58973084b025a57
  • Pointer size: 132 Bytes
  • Size of remote file: 4.48 MB
examples/example_05_people/params.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "prompt": "Front view close up of group of people dancing at a concert in nightclub.",
3
- "neg_prompt": "",
4
- "cfg": 15,
5
- "cfg_image": 9,
6
- "seed": 3,
7
- "steps": 20,
8
- "width": 512,
9
- "height": 512,
10
- "scheduler": "dpm",
11
- "fps": 20,
12
- "format": "gif",
13
- "num_frames": 24
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/example_06_sophie/output.gif DELETED

Git LFS Details

  • SHA256: 464c468839bdc51e36f8f3c61f1d8d5f823414d207d024059ee9dbcebceda044
  • Pointer size: 132 Bytes
  • Size of remote file: 4.63 MB
examples/example_06_sophie/params.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "prompt": "A girl is dancing by a beautiful lake by sophie anderson and greg rutkowski and alphonse mucha.",
3
- "neg_prompt": "",
4
- "cfg": 15,
5
- "cfg_image": 15,
6
- "seed": 1,
7
- "steps": 20,
8
- "width": 512,
9
- "height": 512,
10
- "scheduler": "dpm",
11
- "fps": 20,
12
- "format": "gif",
13
- "num_frames": 24
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
makeavid_sd/inference.py CHANGED
@@ -1,5 +1,5 @@
1
 
2
- from typing import Any, Union, Optional, Tuple, List, Dict
3
  import os
4
  import gc
5
  from functools import partial
@@ -17,14 +17,13 @@ import einops
17
  from diffusers import FlaxAutoencoderKL, FlaxUNet2DConditionModel
18
  from diffusers import (
19
  FlaxDDIMScheduler,
 
20
  FlaxPNDMScheduler,
21
  FlaxLMSDiscreteScheduler,
22
  FlaxDPMSolverMultistepScheduler,
 
 
23
  )
24
- from diffusers.schedulers.scheduling_ddim_flax import DDIMSchedulerState
25
- from diffusers.schedulers.scheduling_pndm_flax import PNDMSchedulerState
26
- from diffusers.schedulers.scheduling_lms_discrete_flax import LMSDiscreteSchedulerState
27
- from diffusers.schedulers.scheduling_dpmsolver_multistep_flax import DPMSolverMultistepSchedulerState
28
 
29
  from transformers import FlaxCLIPTextModel, CLIPTokenizer
30
 
@@ -32,31 +31,14 @@ from .flax_impl.flax_unet_pseudo3d_condition import UNetPseudo3DConditionModel
32
 
33
  SchedulerType = Union[
34
  FlaxDDIMScheduler,
 
35
  FlaxPNDMScheduler,
36
  FlaxLMSDiscreteScheduler,
37
  FlaxDPMSolverMultistepScheduler,
 
 
38
  ]
39
 
40
- SchedulerStateType = Union[
41
- DDIMSchedulerState,
42
- PNDMSchedulerState,
43
- LMSDiscreteSchedulerState,
44
- DPMSolverMultistepSchedulerState,
45
- ]
46
-
47
- SCHEDULERS: Dict[str, SchedulerType] = {
48
- 'dpm': FlaxDPMSolverMultistepScheduler, # husbando
49
- 'ddim': FlaxDDIMScheduler,
50
- #'PLMS': FlaxPNDMScheduler, # its not correctly implemented in diffusers, output is bad, but at least it "works"
51
- #'LMS': FlaxLMSDiscreteScheduler, # borked
52
- # image_latents, image_scheduler_state = scheduler.step(
53
- # File "/mnt/work1/make_a_vid/makeavid-space/.venv/lib/python3.10/site-packages/diffusers/schedulers/scheduling_lms_discrete_flax.py", line 255, in step
54
- # order = min(timestep + 1, order)
55
- # jax._src.errors.ConcretizationTypeError: Abstract tracer value encountered where concrete value is expected: Traced<ShapedArray(bool[])>with<DynamicJaxprTrace(level=1/1)>
56
- # The problem arose with the `bool` function.
57
- # The error occurred while tracing the function scanned_fun at /mnt/work1/make_a_vid/makeavid-space/.venv/lib/python3.10/site-packages/jax/_src/lax/control_flow/loops.py:1668 for scan. This concrete value was not available in Python because it depends on the values of the arguments loop_carry[0] and loop_carry[1][1].timesteps
58
- }
59
-
60
  def dtypestr(x: jnp.dtype):
61
  if x == jnp.float32: return 'float32'
62
  elif x == jnp.float16: return 'float16'
@@ -71,6 +53,7 @@ def castto(dtype, m, x):
71
  class InferenceUNetPseudo3D:
72
  def __init__(self,
73
  model_path: str,
 
74
  dtype: jnp.dtype = jnp.float16,
75
  hf_auth_token: Union[str, None] = None
76
  ) -> None:
@@ -146,27 +129,28 @@ class InferenceUNetPseudo3D:
146
  subfolder = 'tokenizer',
147
  use_auth_token = self.hf_auth_token
148
  )
149
- self.schedulers: Dict[str, Dict[str, SchedulerType]] = {}
150
- for scheduler_name in SCHEDULERS:
151
- if scheduler_name not in ['KarrasVe', 'SDEVe']:
152
- scheduler, scheduler_state = SCHEDULERS[scheduler_name].from_pretrained(
153
- self.model_path,
154
- subfolder = 'scheduler',
155
- dtype = jnp.float32,
156
- use_auth_token = self.hf_auth_token
157
- )
158
- else:
159
- scheduler, scheduler_state = SCHEDULERS[scheduler_name].from_pretrained(
160
- self.model_path,
161
- subfolder = 'scheduler',
162
- use_auth_token = self.hf_auth_token
163
- )
164
- self.schedulers[scheduler_name] = scheduler
165
- self.params[scheduler_name] = scheduler_state
166
  self.vae_scale_factor: int = int(2 ** (len(self.vae.config.block_out_channels) - 1))
167
  self.device_count = jax.device_count()
168
  gc.collect()
169
 
 
 
 
 
 
 
 
 
 
 
170
  def prepare_inputs(self,
171
  prompt: List[str],
172
  neg_prompt: List[str],
@@ -224,18 +208,16 @@ class InferenceUNetPseudo3D:
224
  return tokens, neg_tokens, hint, mask
225
 
226
  def generate(self,
227
- prompt: Union[str, List[str]] = '',
228
- inference_steps: int = 20,
229
  hint_image: Union[Image.Image, List[Image.Image], None] = None,
230
  mask_image: Union[Image.Image, List[Image.Image], None] = None,
231
  neg_prompt: Union[str, List[str]] = '',
232
- cfg: float = 15.0,
233
- cfg_image: Optional[float] = None,
234
  num_frames: int = 24,
235
  width: int = 512,
236
  height: int = 512,
237
- seed: int = 0,
238
- scheduler_type: str = 'dpm'
239
  ) -> List[List[Image.Image]]:
240
  assert inference_steps > 0, f'number of inference steps must be > 0 but is {inference_steps}'
241
  assert num_frames > 0, f'number of frames must be > 0 but is {num_frames}'
@@ -261,7 +243,6 @@ class InferenceUNetPseudo3D:
261
  if isinstance(neg_prompt, str):
262
  neg_prompt = [ neg_prompt ] * batch_size
263
  assert len(neg_prompt) == batch_size, f'number of negative prompts must be equal to batch size {batch_size} but is {len(neg_prompt)}'
264
- assert scheduler_type in SCHEDULERS, f'unknown type of noise scheduler: {scheduler_type}, must be one of {list(SCHEDULERS.keys())}'
265
  tokens, neg_tokens, hint, mask = self.prepare_inputs(
266
  prompt = prompt,
267
  neg_prompt = neg_prompt,
@@ -270,14 +251,11 @@ class InferenceUNetPseudo3D:
270
  width = width,
271
  height = height
272
  )
273
- if cfg_image is None:
274
- cfg_image = cfg
275
- #params['scheduler'] = scheduler_state
276
  # NOTE splitting rngs is not deterministic,
277
  # running on different device counts gives different seeds
278
  #rng = jax.random.PRNGKey(seed)
279
  #rngs = jax.random.split(rng, self.device_count)
280
- # manually assign seeded RNGs to devices for reproducability
281
  rngs = jnp.array([ jax.random.PRNGKey(seed + i) for i in range(self.device_count) ])
282
  params = jax_utils.replicate(self.params)
283
  tokens = shard(tokens)
@@ -294,11 +272,9 @@ class InferenceUNetPseudo3D:
294
  height,
295
  width,
296
  cfg,
297
- cfg_image,
298
  rngs,
299
  params,
300
- use_imagegen,
301
- scheduler_type,
302
  )
303
  if images.ndim == 5:
304
  images = einops.rearrange(images, 'd f c h w -> (d f) h w c')
@@ -319,11 +295,9 @@ class InferenceUNetPseudo3D:
319
  height,
320
  width,
321
  cfg: float,
322
- cfg_image: float,
323
  rng: jax.random.KeyArray,
324
  params: Union[Dict[str, Any], FrozenDict[str, Any]],
325
- use_imagegen: bool,
326
- scheduler_type: str
327
  ) -> List[Image.Image]:
328
  batch_size = tokens.shape[0]
329
  latent_h = height // self.vae_scale_factor
@@ -338,18 +312,15 @@ class InferenceUNetPseudo3D:
338
  encoded_prompt = self.text_encoder(tokens, params = params['text_encoder'])[0]
339
  encoded_neg_prompt = self.text_encoder(neg_tokens, params = params['text_encoder'])[0]
340
 
341
- scheduler = self.schedulers[scheduler_type]
342
- scheduler_state = params[scheduler_type]
343
-
344
  if use_imagegen:
345
  image_latent_shape = (batch_size, self.vae.config.latent_channels, latent_h, latent_w)
346
  image_latents = jax.random.normal(
347
  rng,
348
  shape = image_latent_shape,
349
  dtype = jnp.float32
350
- ) * scheduler_state.init_noise_sigma
351
- image_scheduler_state = scheduler.set_timesteps(
352
- scheduler_state,
353
  num_inference_steps = inference_steps,
354
  shape = image_latents.shape
355
  )
@@ -357,21 +328,21 @@ class InferenceUNetPseudo3D:
357
  image_latents, image_scheduler_state = args
358
  t = image_scheduler_state.timesteps[step]
359
  tt = jnp.broadcast_to(t, image_latents.shape[0])
360
- latents_input = scheduler.scale_model_input(image_scheduler_state, image_latents, t)
361
  noise_pred = self.imunet.apply(
362
- { 'params': params['imunet']} ,
363
  latents_input,
364
  tt,
365
  encoder_hidden_states = encoded_prompt
366
  ).sample
367
  noise_pred_uncond = self.imunet.apply(
368
- { 'params': params['imunet'] },
369
  latents_input,
370
  tt,
371
  encoder_hidden_states = encoded_neg_prompt
372
  ).sample
373
- noise_pred = noise_pred_uncond + cfg_image * (noise_pred - noise_pred_uncond)
374
- image_latents, image_scheduler_state = scheduler.step(
375
  image_scheduler_state,
376
  noise_pred.astype(jnp.float32),
377
  t,
@@ -386,7 +357,7 @@ class InferenceUNetPseudo3D:
386
  hint = image_latents
387
  else:
388
  hint = self.vae.apply(
389
- { 'params': params['vae'] },
390
  hint,
391
  method = self.vae.encode
392
  ).latent_dist.mean * self.vae.config.scaling_factor
@@ -404,9 +375,9 @@ class InferenceUNetPseudo3D:
404
  rng,
405
  shape = latent_shape,
406
  dtype = jnp.float32
407
- ) * scheduler_state.init_noise_sigma
408
- scheduler_state = scheduler.set_timesteps(
409
- scheduler_state,
410
  num_inference_steps = inference_steps,
411
  shape = latents.shape
412
  )
@@ -415,7 +386,7 @@ class InferenceUNetPseudo3D:
415
  latents, scheduler_state = args
416
  t = scheduler_state.timesteps[step]#jnp.array(scheduler_state.timesteps, dtype = jnp.int32)[step]
417
  tt = jnp.broadcast_to(t, latents.shape[0])
418
- latents_input = scheduler.scale_model_input(scheduler_state, latents, t)
419
  latents_input = jnp.concatenate([latents_input, mask, hint], axis = 1)
420
  noise_pred = self.unet.apply(
421
  { 'params': params['unet'] },
@@ -430,7 +401,7 @@ class InferenceUNetPseudo3D:
430
  encoded_neg_prompt
431
  ).sample
432
  noise_pred = noise_pred_uncond + cfg * (noise_pred - noise_pred_uncond)
433
- latents, scheduler_state = scheduler.step(
434
  scheduler_state,
435
  noise_pred.astype(jnp.float32),
436
  t,
@@ -482,11 +453,9 @@ class InferenceUNetPseudo3D:
482
  None, # 7 height
483
  None, # 8 width
484
  None, # 9 cfg
485
- None, # 10 cfg_image
486
- 0, # 11 rng
487
- 0, # 12 params
488
- None, # 13 use_imagegen
489
- None, # 14 scheduler_type
490
  ),
491
  static_broadcasted_argnums = ( # trigger recompilation on change
492
  0, # inference_class
@@ -494,8 +463,7 @@ class InferenceUNetPseudo3D:
494
  6, # num_frames
495
  7, # height
496
  8, # width
497
- 13, # use_imagegen
498
- 14, # scheduler_type
499
  )
500
  )
501
  def _p_generate(
@@ -504,16 +472,14 @@ def _p_generate(
504
  neg_tokens,
505
  hint,
506
  mask,
507
- inference_steps: int,
508
- num_frames: int,
509
- height: int,
510
- width: int,
511
- cfg: float,
512
- cfg_image: float,
513
  rng,
514
  params,
515
- use_imagegen: bool,
516
- scheduler_type: str
517
  ):
518
  return inference_class._generate(
519
  tokens,
@@ -525,10 +491,8 @@ def _p_generate(
525
  height,
526
  width,
527
  cfg,
528
- cfg_image,
529
  rng,
530
  params,
531
- use_imagegen,
532
- scheduler_type
533
  )
534
 
 
1
 
2
+ from typing import Any, Union, Tuple, List, Dict
3
  import os
4
  import gc
5
  from functools import partial
 
17
  from diffusers import FlaxAutoencoderKL, FlaxUNet2DConditionModel
18
  from diffusers import (
19
  FlaxDDIMScheduler,
20
+ FlaxDDPMScheduler,
21
  FlaxPNDMScheduler,
22
  FlaxLMSDiscreteScheduler,
23
  FlaxDPMSolverMultistepScheduler,
24
+ FlaxKarrasVeScheduler,
25
+ FlaxScoreSdeVeScheduler
26
  )
 
 
 
 
27
 
28
  from transformers import FlaxCLIPTextModel, CLIPTokenizer
29
 
 
31
 
32
  SchedulerType = Union[
33
  FlaxDDIMScheduler,
34
+ FlaxDDPMScheduler,
35
  FlaxPNDMScheduler,
36
  FlaxLMSDiscreteScheduler,
37
  FlaxDPMSolverMultistepScheduler,
38
+ FlaxKarrasVeScheduler,
39
+ FlaxScoreSdeVeScheduler
40
  ]
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  def dtypestr(x: jnp.dtype):
43
  if x == jnp.float32: return 'float32'
44
  elif x == jnp.float16: return 'float16'
 
53
  class InferenceUNetPseudo3D:
54
  def __init__(self,
55
  model_path: str,
56
+ scheduler_cls: SchedulerType = FlaxDDIMScheduler,
57
  dtype: jnp.dtype = jnp.float16,
58
  hf_auth_token: Union[str, None] = None
59
  ) -> None:
 
129
  subfolder = 'tokenizer',
130
  use_auth_token = self.hf_auth_token
131
  )
132
+ scheduler, scheduler_state = scheduler_cls.from_pretrained(
133
+ self.model_path,
134
+ subfolder = 'scheduler',
135
+ dtype = jnp.float32,
136
+ use_auth_token = self.hf_auth_token
137
+ )
138
+ self.scheduler: scheduler_cls = scheduler
139
+ self.params['scheduler'] = scheduler_state
 
 
 
 
 
 
 
 
 
140
  self.vae_scale_factor: int = int(2 ** (len(self.vae.config.block_out_channels) - 1))
141
  self.device_count = jax.device_count()
142
  gc.collect()
143
 
144
+ def set_scheduler(self, scheduler_cls: SchedulerType) -> None:
145
+ scheduler, scheduler_state = scheduler_cls.from_pretrained(
146
+ self.model_path,
147
+ subfolder = 'scheduler',
148
+ dtype = jnp.float32,
149
+ use_auth_token = self.hf_auth_token
150
+ )
151
+ self.scheduler: scheduler_cls = scheduler
152
+ self.params['scheduler'] = scheduler_state
153
+
154
  def prepare_inputs(self,
155
  prompt: List[str],
156
  neg_prompt: List[str],
 
208
  return tokens, neg_tokens, hint, mask
209
 
210
  def generate(self,
211
+ prompt: Union[str, List[str]],
212
+ inference_steps: int,
213
  hint_image: Union[Image.Image, List[Image.Image], None] = None,
214
  mask_image: Union[Image.Image, List[Image.Image], None] = None,
215
  neg_prompt: Union[str, List[str]] = '',
216
+ cfg: float = 10.0,
 
217
  num_frames: int = 24,
218
  width: int = 512,
219
  height: int = 512,
220
+ seed: int = 0
 
221
  ) -> List[List[Image.Image]]:
222
  assert inference_steps > 0, f'number of inference steps must be > 0 but is {inference_steps}'
223
  assert num_frames > 0, f'number of frames must be > 0 but is {num_frames}'
 
243
  if isinstance(neg_prompt, str):
244
  neg_prompt = [ neg_prompt ] * batch_size
245
  assert len(neg_prompt) == batch_size, f'number of negative prompts must be equal to batch size {batch_size} but is {len(neg_prompt)}'
 
246
  tokens, neg_tokens, hint, mask = self.prepare_inputs(
247
  prompt = prompt,
248
  neg_prompt = neg_prompt,
 
251
  width = width,
252
  height = height
253
  )
 
 
 
254
  # NOTE splitting rngs is not deterministic,
255
  # running on different device counts gives different seeds
256
  #rng = jax.random.PRNGKey(seed)
257
  #rngs = jax.random.split(rng, self.device_count)
258
+ # manually assign seeded RNGs to devices for reproducability
259
  rngs = jnp.array([ jax.random.PRNGKey(seed + i) for i in range(self.device_count) ])
260
  params = jax_utils.replicate(self.params)
261
  tokens = shard(tokens)
 
272
  height,
273
  width,
274
  cfg,
 
275
  rngs,
276
  params,
277
+ use_imagegen
 
278
  )
279
  if images.ndim == 5:
280
  images = einops.rearrange(images, 'd f c h w -> (d f) h w c')
 
295
  height,
296
  width,
297
  cfg: float,
 
298
  rng: jax.random.KeyArray,
299
  params: Union[Dict[str, Any], FrozenDict[str, Any]],
300
+ use_imagegen: bool
 
301
  ) -> List[Image.Image]:
302
  batch_size = tokens.shape[0]
303
  latent_h = height // self.vae_scale_factor
 
312
  encoded_prompt = self.text_encoder(tokens, params = params['text_encoder'])[0]
313
  encoded_neg_prompt = self.text_encoder(neg_tokens, params = params['text_encoder'])[0]
314
 
 
 
 
315
  if use_imagegen:
316
  image_latent_shape = (batch_size, self.vae.config.latent_channels, latent_h, latent_w)
317
  image_latents = jax.random.normal(
318
  rng,
319
  shape = image_latent_shape,
320
  dtype = jnp.float32
321
+ ) * params['scheduler'].init_noise_sigma
322
+ image_scheduler_state = self.scheduler.set_timesteps(
323
+ params['scheduler'],
324
  num_inference_steps = inference_steps,
325
  shape = image_latents.shape
326
  )
 
328
  image_latents, image_scheduler_state = args
329
  t = image_scheduler_state.timesteps[step]
330
  tt = jnp.broadcast_to(t, image_latents.shape[0])
331
+ latents_input = self.scheduler.scale_model_input(image_scheduler_state, image_latents, t)
332
  noise_pred = self.imunet.apply(
333
+ {'params': params['imunet']},
334
  latents_input,
335
  tt,
336
  encoder_hidden_states = encoded_prompt
337
  ).sample
338
  noise_pred_uncond = self.imunet.apply(
339
+ {'params': params['imunet']},
340
  latents_input,
341
  tt,
342
  encoder_hidden_states = encoded_neg_prompt
343
  ).sample
344
+ noise_pred = noise_pred_uncond + cfg * (noise_pred - noise_pred_uncond)
345
+ image_latents, image_scheduler_state = self.scheduler.step(
346
  image_scheduler_state,
347
  noise_pred.astype(jnp.float32),
348
  t,
 
357
  hint = image_latents
358
  else:
359
  hint = self.vae.apply(
360
+ {'params': params['vae']},
361
  hint,
362
  method = self.vae.encode
363
  ).latent_dist.mean * self.vae.config.scaling_factor
 
375
  rng,
376
  shape = latent_shape,
377
  dtype = jnp.float32
378
+ ) * params['scheduler'].init_noise_sigma
379
+ scheduler_state = self.scheduler.set_timesteps(
380
+ params['scheduler'],
381
  num_inference_steps = inference_steps,
382
  shape = latents.shape
383
  )
 
386
  latents, scheduler_state = args
387
  t = scheduler_state.timesteps[step]#jnp.array(scheduler_state.timesteps, dtype = jnp.int32)[step]
388
  tt = jnp.broadcast_to(t, latents.shape[0])
389
+ latents_input = self.scheduler.scale_model_input(scheduler_state, latents, t)
390
  latents_input = jnp.concatenate([latents_input, mask, hint], axis = 1)
391
  noise_pred = self.unet.apply(
392
  { 'params': params['unet'] },
 
401
  encoded_neg_prompt
402
  ).sample
403
  noise_pred = noise_pred_uncond + cfg * (noise_pred - noise_pred_uncond)
404
+ latents, scheduler_state = self.scheduler.step(
405
  scheduler_state,
406
  noise_pred.astype(jnp.float32),
407
  t,
 
453
  None, # 7 height
454
  None, # 8 width
455
  None, # 9 cfg
456
+ 0, # 10 rng
457
+ 0, # 11 params
458
+ None, # 12 use_imagegen
 
 
459
  ),
460
  static_broadcasted_argnums = ( # trigger recompilation on change
461
  0, # inference_class
 
463
  6, # num_frames
464
  7, # height
465
  8, # width
466
+ 12, # use_imagegen
 
467
  )
468
  )
469
  def _p_generate(
 
472
  neg_tokens,
473
  hint,
474
  mask,
475
+ inference_steps,
476
+ num_frames,
477
+ height,
478
+ width,
479
+ cfg,
 
480
  rng,
481
  params,
482
+ use_imagegen
 
483
  ):
484
  return inference_class._generate(
485
  tokens,
 
491
  height,
492
  width,
493
  cfg,
 
494
  rng,
495
  params,
496
+ use_imagegen
 
497
  )
498
 
requirements.txt CHANGED
@@ -6,5 +6,5 @@ einops
6
  -f https://download.pytorch.org/whl/cpu/torch
7
  torch[cpu]
8
  -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
9
- jax[cuda11_pip] #jax[cuda11_cudnn82] #jax[cuda11_cudnn86] #jax[cuda11_cudnn805]
10
  flax
 
6
  -f https://download.pytorch.org/whl/cpu/torch
7
  torch[cpu]
8
  -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
9
+ jax[cuda11_cudnn82] #jax[cuda11_cudnn86] #jax[cuda11_cudnn805]
10
  flax