Spaces:
Build error
Build error
TejAndrewsACC
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,58 @@
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer, StopStringCriteria, StoppingCriteriaList
|
2 |
import torch
|
3 |
|
4 |
# Load the tokenizer and model
|
5 |
repo_name = "nvidia/Hymba-1.5B-Instruct"
|
6 |
-
|
7 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
8 |
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
9 |
-
model = model.cuda().to(torch.bfloat16)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
|
|
|
14 |
messages = [
|
15 |
{"role": "system", "content": "You are a helpful assistant."}
|
16 |
]
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
30 |
-
input_length = tokenized_chat.shape[1]
|
31 |
-
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
32 |
|
33 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, StopStringCriteria, StoppingCriteriaList
|
3 |
import torch
|
4 |
|
5 |
# Load the tokenizer and model
|
6 |
repo_name = "nvidia/Hymba-1.5B-Instruct"
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
8 |
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
|
|
9 |
|
10 |
+
# Move the model to GPU with float16 precision for efficiency
|
11 |
+
model = model.to("cuda").to(torch.float16)
|
12 |
|
13 |
+
# Initialize the conversation history
|
14 |
messages = [
|
15 |
{"role": "system", "content": "You are a helpful assistant."}
|
16 |
]
|
17 |
+
|
18 |
+
# Define stopping criteria
|
19 |
+
stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings=["</s>"])])
|
20 |
+
|
21 |
+
# Chat function for Gradio interface
|
22 |
+
def chat_function(user_input):
|
23 |
+
# Add user message to the conversation history
|
24 |
+
messages.append({"role": "user", "content": user_input})
|
25 |
+
|
26 |
+
# Tokenize the conversation
|
27 |
+
tokenized_chat = tokenizer(messages, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
28 |
+
|
29 |
+
# Generate a response
|
30 |
+
outputs = model.generate(
|
31 |
+
tokenized_chat["input_ids"],
|
32 |
+
max_new_tokens=256,
|
33 |
+
do_sample=False,
|
34 |
+
temperature=0.7,
|
35 |
+
use_cache=True,
|
36 |
+
stopping_criteria=stopping_criteria
|
37 |
+
)
|
38 |
+
|
39 |
+
# Decode the output response
|
40 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
+
|
42 |
+
# Add the assistant's response to the conversation history
|
43 |
+
messages.append({"role": "assistant", "content": response})
|
44 |
+
|
45 |
+
return response
|
46 |
+
|
47 |
+
# Set up Gradio interface with the chatbot template
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=chat_function,
|
50 |
+
inputs=gr.inputs.Textbox(label="Your message", placeholder="Enter your message here..."),
|
51 |
+
outputs=gr.outputs.Chatbot(),
|
52 |
+
live=True,
|
53 |
+
title="Hymba Chatbot",
|
54 |
+
description="Chat with the Hymba-1.5B-Instruct model!"
|
55 |
)
|
|
|
|
|
56 |
|
57 |
+
# Launch the Gradio interface
|
58 |
+
iface.launch()
|