SuperFast_SDXL / app.py
Tech-Meld's picture
Create app.py
97baa3c verified
raw
history blame
862 Bytes
from diffusers import DiffusionPipeline, LCMScheduler
import gradio as gr
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
def generate_images(prompt, batch_size):
images = []
for _ in range(batch_size):
results = pipe(
prompt=prompt,
num_inference_steps=4,
guidance_scale=1.4,
)
images.append(results.images[0])
return images
iface = gr.Interface(
fn=generate_images,
inputs=[
gr.Textbox(label="Prompt"),
gr.Slider(label="Batch Size", minimum=1, maximum=12, step=1, value=1)
],
outputs=gr.Gallery(label="Generated Images"),
title="SuperFast SDXL Generation."
)
iface.launch()