Spaces:
Runtime error
Runtime error
from diffusers import DiffusionPipeline, LCMScheduler | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from optimum.intel import OVStableDiffusionXLPipeline | |
import gradio as gr | |
# Loading the model | |
model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
pipe = DiffusionPipeline.from_pretrained(model_id) | |
# Setting the scheduler | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
# Loading LoRA weights | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
# Convert the model to OpenVINO format | |
pipeline = OVStableDiffusionXLPipeline.from_pretrained( | |
model_id, | |
export=True | |
) | |
def generate_images(prompt, batch_size, num_inference_steps, guidance_scale): | |
images = [] | |
for _ in range(batch_size): | |
results = pipeline( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale | |
) | |
images.append(results.images[0]) | |
return images | |
iface = gr.Interface( | |
fn=generate_images, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Slider(label="Batch Size", minimum=1, maximum=12, step=1, value=1), | |
gr.Slider(label="Num Inference Steps", minimum=1, maximum=6, step=1, value=4), | |
gr.Slider(label="Guidance Scale", minimum=0.0, maximum=3, step=0.1, value=1.4) | |
], | |
outputs=gr.Gallery(label="Generated Images"), | |
title="Fast SDXL Generation on CPU" | |
) | |
iface.launch() |