Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,32 +10,37 @@ from io import BytesIO
|
|
10 |
import base64
|
11 |
import torch
|
12 |
from torch.nn.utils import prune
|
|
|
13 |
|
14 |
# Function to fetch open-weight LLM models
|
15 |
def fetch_open_weight_models():
|
16 |
models = list_models()
|
17 |
return models
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Function to prune a model using the "merge-kit" approach
|
20 |
def prune_model(llm_model_name, target_size, hf_write_token, repo_name):
|
21 |
try:
|
22 |
# Load the LLM model and tokenizer
|
23 |
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
|
24 |
-
# Handle cases where the model is split into multiple safetensors
|
25 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
26 |
llm_model_name,
|
27 |
-
torch_dtype=torch.float16,
|
28 |
)
|
29 |
|
30 |
# Get the model config
|
31 |
config = AutoConfig.from_pretrained(llm_model_name)
|
32 |
-
# Calculate the target number of parameters
|
33 |
target_num_parameters = int(config.num_parameters * (target_size / 100))
|
34 |
|
35 |
-
#
|
36 |
pruned_model = merge_kit_prune(llm_model, target_num_parameters)
|
37 |
|
38 |
-
# Save the pruned model
|
39 |
api = HfApi()
|
40 |
repo_id = f"{hf_write_token}/{repo_name}"
|
41 |
create_repo(repo_id, token=hf_write_token, private=False, exist_ok=True)
|
@@ -51,10 +56,11 @@ def prune_model(llm_model_name, target_size, hf_write_token, repo_name):
|
|
51 |
fig.savefig(buf, format="png")
|
52 |
buf.seek(0)
|
53 |
image_base64 = base64.b64encode(buf.read()).decode("utf-8")
|
54 |
-
|
|
|
55 |
|
56 |
except Exception as e:
|
57 |
-
return f"Error: {e}", None
|
58 |
|
59 |
# Merge-kit Pruning Function (adjust as needed)
|
60 |
def merge_kit_prune(model: PreTrainedModel, target_num_parameters: int) -> PreTrainedModel:
|
@@ -88,55 +94,24 @@ def create_interface():
|
|
88 |
with gr.Blocks() as demo:
|
89 |
gr.Markdown("## Create a Smaller LLM")
|
90 |
|
91 |
-
# Input for model name
|
92 |
llm_model_name = gr.Textbox(label="Choose a Large Language Model", placeholder="Enter the model name", interactive=True)
|
93 |
-
|
94 |
-
# Input for target model size
|
95 |
-
target_size = gr.Slider(
|
96 |
-
label="Target Model Size (%)",
|
97 |
-
minimum=1,
|
98 |
-
maximum=100,
|
99 |
-
step=1,
|
100 |
-
value=50,
|
101 |
-
interactive=True,
|
102 |
-
)
|
103 |
-
|
104 |
-
# Input for Hugging Face write token
|
105 |
hf_write_token = gr.Textbox(label="Hugging Face Write Token", placeholder="Enter your HF write token", interactive=True, type="password")
|
106 |
-
|
107 |
-
# Input for repository name
|
108 |
repo_name = gr.Textbox(label="Repository Name", placeholder="Enter the name of the repository", interactive=True)
|
109 |
-
|
110 |
-
# Output for pruning status
|
111 |
pruning_status = gr.Textbox(label="Pruning Status", interactive=False)
|
112 |
-
|
113 |
-
# Button to start pruning
|
114 |
prune_button = gr.Button("Prune Model")
|
115 |
-
|
116 |
-
# Output for visualization
|
117 |
visualization = gr.Image(label="Model Size Comparison", interactive=False)
|
118 |
|
119 |
-
|
120 |
-
prune_button.click(
|
121 |
-
fn=prune_model,
|
122 |
-
inputs=[llm_model_name, target_size, hf_write_token, repo_name],
|
123 |
-
outputs=[pruning_status, visualization],
|
124 |
-
)
|
125 |
|
126 |
-
# Example usage of the pruned model (optional)
|
127 |
text_input = gr.Textbox(label="Input Text")
|
128 |
text_output = gr.Textbox(label="Generated Text")
|
129 |
-
|
130 |
-
# Generate text button
|
131 |
generate_button = gr.Button("Generate Text")
|
132 |
|
133 |
def generate_text(text, repo_name):
|
134 |
try:
|
135 |
-
# Load the pruned model and tokenizer
|
136 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
137 |
model = AutoModelForCausalLM.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
138 |
-
|
139 |
-
# Use the pipeline for text generation
|
140 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
141 |
generated_text = generator(text, max_length=50, num_beams=5, num_return_sequences=1)[0]["generated_text"]
|
142 |
return generated_text
|
@@ -149,4 +124,4 @@ def create_interface():
|
|
149 |
|
150 |
# Create and launch the Gradio interface
|
151 |
demo = create_interface()
|
152 |
-
demo.launch(share=True)
|
|
|
10 |
import base64
|
11 |
import torch
|
12 |
from torch.nn.utils import prune
|
13 |
+
import subprocess
|
14 |
|
15 |
# Function to fetch open-weight LLM models
|
16 |
def fetch_open_weight_models():
|
17 |
models = list_models()
|
18 |
return models
|
19 |
|
20 |
+
# Ensure sentencepiece is installed
|
21 |
+
try:
|
22 |
+
import sentencepiece
|
23 |
+
except ImportError:
|
24 |
+
subprocess.check_call(["pip", "install", "sentencepiece"])
|
25 |
+
|
26 |
# Function to prune a model using the "merge-kit" approach
|
27 |
def prune_model(llm_model_name, target_size, hf_write_token, repo_name):
|
28 |
try:
|
29 |
# Load the LLM model and tokenizer
|
30 |
llm_tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
|
|
|
31 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
32 |
llm_model_name,
|
33 |
+
torch_dtype=torch.float16,
|
34 |
)
|
35 |
|
36 |
# Get the model config
|
37 |
config = AutoConfig.from_pretrained(llm_model_name)
|
|
|
38 |
target_num_parameters = int(config.num_parameters * (target_size / 100))
|
39 |
|
40 |
+
# Prune the model
|
41 |
pruned_model = merge_kit_prune(llm_model, target_num_parameters)
|
42 |
|
43 |
+
# Save the pruned model
|
44 |
api = HfApi()
|
45 |
repo_id = f"{hf_write_token}/{repo_name}"
|
46 |
create_repo(repo_id, token=hf_write_token, private=False, exist_ok=True)
|
|
|
56 |
fig.savefig(buf, format="png")
|
57 |
buf.seek(0)
|
58 |
image_base64 = base64.b64encode(buf.read()).decode("utf-8")
|
59 |
+
|
60 |
+
return f"Pruned model saved to Hugging Face Hub in repository {repo_id}", f"data:image/png;base64,{image_base64}", None
|
61 |
|
62 |
except Exception as e:
|
63 |
+
return f"Error: {e}", None, None
|
64 |
|
65 |
# Merge-kit Pruning Function (adjust as needed)
|
66 |
def merge_kit_prune(model: PreTrainedModel, target_num_parameters: int) -> PreTrainedModel:
|
|
|
94 |
with gr.Blocks() as demo:
|
95 |
gr.Markdown("## Create a Smaller LLM")
|
96 |
|
|
|
97 |
llm_model_name = gr.Textbox(label="Choose a Large Language Model", placeholder="Enter the model name", interactive=True)
|
98 |
+
target_size = gr.Slider(label="Target Model Size (%)", minimum=1, maximum=100, step=1, value=50, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
hf_write_token = gr.Textbox(label="Hugging Face Write Token", placeholder="Enter your HF write token", interactive=True, type="password")
|
|
|
|
|
100 |
repo_name = gr.Textbox(label="Repository Name", placeholder="Enter the name of the repository", interactive=True)
|
|
|
|
|
101 |
pruning_status = gr.Textbox(label="Pruning Status", interactive=False)
|
|
|
|
|
102 |
prune_button = gr.Button("Prune Model")
|
|
|
|
|
103 |
visualization = gr.Image(label="Model Size Comparison", interactive=False)
|
104 |
|
105 |
+
prune_button.click(fn=prune_model, inputs=[llm_model_name, target_size, hf_write_token, repo_name], outputs=[pruning_status, visualization])
|
|
|
|
|
|
|
|
|
|
|
106 |
|
|
|
107 |
text_input = gr.Textbox(label="Input Text")
|
108 |
text_output = gr.Textbox(label="Generated Text")
|
|
|
|
|
109 |
generate_button = gr.Button("Generate Text")
|
110 |
|
111 |
def generate_text(text, repo_name):
|
112 |
try:
|
|
|
113 |
tokenizer = AutoTokenizer.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
114 |
model = AutoModelForCausalLM.from_pretrained(repo_name, use_auth_token=hf_write_token)
|
|
|
|
|
115 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
116 |
generated_text = generator(text, max_length=50, num_beams=5, num_return_sequences=1)[0]["generated_text"]
|
117 |
return generated_text
|
|
|
124 |
|
125 |
# Create and launch the Gradio interface
|
126 |
demo = create_interface()
|
127 |
+
demo.launch(share=True)
|