Spaces:
Sleeping
Sleeping
File size: 2,026 Bytes
5156d56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import torch
import clip
from PIL import Image
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
# Load the CLIP model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
def extract_features_cp(pil_img: Image.Image) -> np.ndarray:
# Preprocess the PIL image using CLIP's preprocess function
img = preprocess(pil_img).unsqueeze(0).to(device)
# Extract features using CLIP
with torch.no_grad():
features = model.encode_image(img)
# Normalize the features
features = features / features.norm(dim=-1, keepdim=True)
# Convert to numpy array and return as a flattened array
return features.cpu().numpy().flatten()
def extract_features(img_path):
# Load and preprocess the image
img = preprocess(Image.open(img_path)).unsqueeze(0).to(device)
# Extract features using CLIP
with torch.no_grad():
features = model.encode_image(img)
# Normalize the features
features = features / features.norm(dim=-1, keepdim=True)
# Convert to numpy array
return features.cpu().numpy().flatten()
def compare_features(features1, features2):
# Cosine similarity
cos_sim = cosine_similarity([features1], [features2])[0][0]
return cos_sim
def predict_similarity(features1, features2, threshold=0.5):
cos_sim = compare_features(features1, features2)
similarity_score = cos_sim
return similarity_score > threshold
if __name__ == '__main__':
# Example usage
img_path1 = 'result.jpg'
img_path2 = 'Vochysia.jpg'
# Extract features
features1 = extract_features(img_path1)
features2 = extract_features(img_path2)
# Compare features
cos_sim = compare_features(features1, features2)
print(f'Cosine Similarity: {cos_sim}')
# Predict similarity
is_similar = predict_similarity(features1, features2, threshold=0.8)
print(f'Are the images similar? {"Yes" if is_similar else "No"}')
|