Commit
·
3ea44b2
1
Parent(s):
a8f1577
Update
Browse files- .gitignore +24 -0
- Dockerfile +20 -0
- README.md +5 -0
- main.py +70 -0
- requirements.txt +0 -0
.gitignore
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Virtual environment
|
2 |
+
venv/
|
3 |
+
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
*.pyc
|
7 |
+
*.pyo
|
8 |
+
*.pyd
|
9 |
+
|
10 |
+
# Compiled C extension
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
dist/
|
15 |
+
build/
|
16 |
+
*.egg-info/
|
17 |
+
|
18 |
+
# Local development
|
19 |
+
db.sqlite3
|
20 |
+
|
21 |
+
# IDE files
|
22 |
+
.vscode/
|
23 |
+
.idea/
|
24 |
+
.env
|
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Sử dụng Python 3.9
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Thiết lập thư mục làm việc
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Sao chép file requirements.txt vào thư mục làm việc
|
8 |
+
COPY requirements.txt .
|
9 |
+
|
10 |
+
# Cài đặt các dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Sao chép toàn bộ mã nguồn vào thư mục làm việc
|
14 |
+
COPY . .
|
15 |
+
|
16 |
+
# Mở cổng 7860, nơi FastAPI sẽ chạy
|
17 |
+
EXPOSE 7860
|
18 |
+
|
19 |
+
# Khởi chạy ứng dụng bằng uvicorn khi container được khởi động
|
20 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -7,4 +7,9 @@ sdk: docker
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
+
python3 -m venv venv
|
11 |
+
venv\Scripts\activate
|
12 |
+
pip freeze > requirements.txt
|
13 |
+
pip install -r requirements.txt
|
14 |
+
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
main.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from fastapi import FastAPI, Query
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
from deep_translator import GoogleTranslator
|
7 |
+
from sse_starlette.sse import EventSourceResponse
|
8 |
+
from dotenv import load_dotenv, find_dotenv
|
9 |
+
|
10 |
+
_ = load_dotenv(find_dotenv()) # read local .env file
|
11 |
+
hf_api_key = os.environ['HF_TOKEN']
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# Initialize the InferenceClient and the translators
|
16 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_api_key)
|
17 |
+
|
18 |
+
# translator_to_en = GoogleTranslator(source='vietnamese', target='english')
|
19 |
+
# translator_to_ar = GoogleTranslator(source='english', target='vietnamese')
|
20 |
+
|
21 |
+
class PromptRequest(BaseModel):
|
22 |
+
message: str
|
23 |
+
history: List[List[str]]
|
24 |
+
|
25 |
+
class GenerateResponse(BaseModel):
|
26 |
+
output: str
|
27 |
+
|
28 |
+
def format_prompt(message, history):
|
29 |
+
prompt = "<s>"
|
30 |
+
for user_prompt, bot_response in history:
|
31 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
32 |
+
prompt += f" {bot_response}</s> "
|
33 |
+
prompt += f"[INST] {message} [/INST]"
|
34 |
+
return prompt
|
35 |
+
def generate_responses(response_stream):
|
36 |
+
for response in response_stream:
|
37 |
+
yield response.token.text
|
38 |
+
|
39 |
+
@app.post("/generate")
|
40 |
+
async def generate(prompt_request: PromptRequest,
|
41 |
+
temperature: float = Query(0.9, ge=0.0, le=1.0),
|
42 |
+
max_new_tokens: int = Query(256, ge=0, le=1048),
|
43 |
+
top_p: float = Query(0.90, ge=0.0, le=1.0),
|
44 |
+
repetition_penalty: float = Query(1.2, ge=1.0, le=2.0),
|
45 |
+
stream: bool = Query(False, description="Set to True to return response stream, False to return full text")):
|
46 |
+
formatted_prompt = format_prompt(prompt_request.message, prompt_request.history)
|
47 |
+
generate_kwargs = dict(
|
48 |
+
temperature=temperature,
|
49 |
+
max_new_tokens=max_new_tokens,
|
50 |
+
top_p=top_p,
|
51 |
+
repetition_penalty=repetition_penalty,
|
52 |
+
do_sample=True,
|
53 |
+
seed=42,
|
54 |
+
)
|
55 |
+
|
56 |
+
if stream:
|
57 |
+
response_stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
58 |
+
return EventSourceResponse(generate_responses(response_stream), media_type="text/event-stream") # media_type="application/x-ndjson"
|
59 |
+
else:
|
60 |
+
response = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False)
|
61 |
+
return response.generated_text
|
62 |
+
|
63 |
+
@app.post("/translate")
|
64 |
+
def translate(text: str, source: str, target: str):
|
65 |
+
if source == target:
|
66 |
+
return {"translated_text": text}
|
67 |
+
|
68 |
+
translator = GoogleTranslator(source=source, target=target)
|
69 |
+
translated_text = translator.translate(text)
|
70 |
+
return {"translated_text": translated_text}
|
requirements.txt
ADDED
Binary file (1.14 kB). View file
|
|