TeamQuad commited on
Commit
67cc9e3
·
verified ·
1 Parent(s): 5f9a9d4
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+
3
+ # Install necessary libraries (This line is for local setup; Gradio Spaces should have dependencies set in the config)
4
+ # !pip install transformers datasets scikit-learn accelerate gradio
5
+
6
+ # Importing necessary libraries
7
+ import gradio as gr
8
+ from datasets import load_dataset
9
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
10
+
11
+ # Load the dataset
12
+ ds = load_dataset("GonzaloA/fake_news")
13
+
14
+ # Load pre-trained tokenizer and model
15
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
16
+ model = AutoModelForSequenceClassification.from_pretrained('TeamQuad-fine-tuned-bert')
17
+
18
+ # Create a classification pipeline
19
+ classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
20
+
21
+ # Define label mapping for fake news detection
22
+ label_mapping = {0: 'fake', 1: 'true'}
23
+
24
+ # Function to classify input text
25
+ def classify_news(text):
26
+ result = classifier(text)
27
+ label = result[0]['label'].split('_')[1] # Extract label from the model's output
28
+ score = result[0]['score'] # Confidence score
29
+ mapped_result = {'label': label_mapping[int(label)], 'score': score}
30
+ return f"Label: {mapped_result['label']}, Score: {mapped_result['score']:.4f}"
31
+
32
+ # Create a Gradio interface
33
+ iface = gr.Interface(
34
+ fn=classify_news, # The function to process the input
35
+ inputs=gr.Textbox(lines=10, placeholder="Enter a news headline or article to classify..."),
36
+ outputs="text", # Output will be displayed as text
37
+ title="Fake News Detection",
38
+ description="Enter a news headline or article and see whether the model classifies it as 'Fake News' or 'True News'."
39
+ )
40
+
41
+ # Launch the interface
42
+ if __name__ == "__main__":
43
+ iface.launch(share=True)