TeamQuad commited on
Commit
8a26d8f
1 Parent(s): 37f867c
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline
3
+ import gradio as gr
4
+ # Load the fine-tuned model and tokenizer
5
+ new_model = AutoModelForSequenceClassification.from_pretrained('TeamQuad-fine-tuned-bert')
6
+ new_tokenizer = AutoTokenizer.from_pretrained('TeamQuad-fine-tuned-bert')
7
+
8
+ # Create a classification pipeline
9
+ classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer)
10
+
11
+ # Add label mapping for fake news detection (assuming LABEL_0 = 'fake' and LABEL_1 = 'true')
12
+ label_mapping = {'LABEL_0': 'fake', 'LABEL_1': 'true'}
13
+
14
+ # Function to classify input text
15
+ def classify_news(text):
16
+ result = classifier(text)
17
+ # Extract the label and score
18
+ label = result[0]['label'] # 'LABEL_0' or 'LABEL_1'
19
+ score = result[0]['score'] # Confidence score
20
+ mapped_result = {'label': label_mapping[label], 'score': score}
21
+ return f"Label: {mapped_result['label']}, Score: {mapped_result['score']:.4f}"
22
+
23
+ # Create a Gradio interface
24
+ iface = gr.Interface(
25
+ fn=classify_news, # The function to process the input
26
+ inputs=gr.Textbox(lines=10, placeholder="Enter a news headline or article to classify..."),
27
+ outputs="text", # Output will be displayed as text
28
+ title="Fake News Detection",
29
+ description="Enter a news headline or article and see whether the model classifies it as 'Fake News' or 'True News'.",
30
+
31
+ )
32
+
33
+ # Launch the interface
34
+ iface.launch(share=True)