File size: 11,454 Bytes
6c82c95
 
 
 
 
 
 
ebc901f
 
6c82c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc901f
 
6c82c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9c540
6c82c95
 
 
 
 
 
 
 
ebc901f
6c82c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9c540
6c82c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9c540
6c82c95
 
 
 
ebc901f
6c82c95
 
 
 
 
 
 
 
 
 
 
 
ebc901f
 
ce9c540
 
 
 
 
 
 
 
 
 
 
 
 
6c82c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
import json
from difflib import Differ
import ffmpeg
import os
from pathlib import Path
import time
import aiohttp
import asyncio


# Set true if you're using huggingface inference API API https://huggingface.co/inference-api
API_BACKEND = True
# MODEL = 'facebook/wav2vec2-large-960h-lv60-self'
# MODEL  = "facebook/wav2vec2-large-960h"
MODEL = "facebook/wav2vec2-base-960h"
# MODEL = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
if API_BACKEND:
    from dotenv import load_dotenv
    import base64
    import asyncio
    load_dotenv(Path(".env"))

    HF_TOKEN = os.environ["HF_TOKEN"]
    headers = {"Authorization": f"Bearer {HF_TOKEN}"}
    API_URL = f'https://api-inference.huggingface.co/models/{MODEL}'

else:
    import torch
    from transformers import pipeline

    # is cuda available?
    cuda = torch.device(
        'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
    device = 0 if torch.cuda.is_available() else -1
    speech_recognizer = pipeline(
        task="automatic-speech-recognition",
        model=f'{MODEL}',
        tokenizer=f'{MODEL}',
        framework="pt",
        device=device,
    )

videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)

samples_data = sorted(Path('examples').glob('*.json'))
SAMPLES = []
for file in samples_data:
    with open(file) as f:
        sample = json.load(f)
    SAMPLES.append(sample)
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))

total_inferences_since_reboot = 415
total_cuts_since_reboot = 1539


async def speech_to_text(video_file_path):
    """
    Takes a video path to convert to audio, transcribe audio channel to text and char timestamps

    Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
    """
    global total_inferences_since_reboot
    if(video_file_path == None):
        raise ValueError("Error no video input")

    video_path = Path(video_file_path)
    try:
        # convert video to audio 16k using PIPE to audio_memory
        audio_memory, _ = ffmpeg.input(video_path).output(
            '-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    ping("speech_to_text")
    last_time = time.time()
    if API_BACKEND:
        # Using Inference API https://huggingface.co/inference-api
        # try twice, because the model must be loaded
        for i in range(10):
            for tries in range(4):
                print(f'Transcribing from API attempt {tries}')
                try:
                    inference_reponse = await query_api(audio_memory)
                    transcription = inference_reponse["text"].lower()
                    timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
                                  for chunk in inference_reponse['chunks']]

                    total_inferences_since_reboot += 1
                    print("\n\ntotal_inferences_since_reboot: ",
                          total_inferences_since_reboot, "\n\n")
                    return (transcription, transcription, timestamps)
                except:
                    if 'error' in inference_reponse and 'estimated_time' in inference_reponse:
                        wait_time = inference_reponse['estimated_time']
                        print("Waiting for model to load....", wait_time)
                        # wait for loading model
                        # 5 seconds plus for certanty
                        await asyncio.sleep(wait_time + 5.0)
                    elif 'error' in inference_reponse:
                        raise RuntimeError("Error Fetching API",
                                           inference_reponse['error'])
                    else:
                        break
            else:
                raise RuntimeError(inference_reponse, "Error Fetching API")
    else:

        try:
            print(f'Transcribing via local model')
            output = speech_recognizer(
                audio_memory, return_timestamps="char",  chunk_length_s=10, stride_length_s=(4, 2))

            transcription = output["text"].lower()
            timestamps = [[chunk["text"].lower(), chunk["timestamp"][0].tolist(), chunk["timestamp"][1].tolist()]
                          for chunk in output['chunks']]
            total_inferences_since_reboot += 1

            print("\n\ntotal_inferences_since_reboot: ",
                  total_inferences_since_reboot, "\n\n")
            return (transcription, transcription, timestamps)
        except Exception as e:
            raise RuntimeError("Error Running inference with local model", e)


async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
    """
    Given original video input, text transcript + timestamps,
    and edit ext cuts video segments into a single video
    """
    global total_cuts_since_reboot

    video_path = Path(video_in)
    video_file_name = video_path.stem
    if(video_in == None or text_in == None or transcription == None):
        raise ValueError("Inputs undefined")

    d = Differ()
    # compare original transcription with edit text
    diff_chars = d.compare(transcription, text_in)
    # remove all text aditions from diff
    filtered = list(filter(lambda x: x[0] != '+', diff_chars))

    # filter timestamps to be removed
    # timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
    # return diff tokes and cutted video!!

    # groupping character timestamps so there are less cuts
    idx = 0
    grouped = {}
    for(a, b) in zip(filtered, timestamps):
        if a[0] != '-':
            if idx in grouped:
                grouped[idx].append(b)
            else:
                grouped[idx] = []
                grouped[idx].append(b)
        else:
            idx += 1

    # after grouping, gets the lower and upter start and time for each group
    timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]

    between_str = '+'.join(
        map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))

    if timestamps_to_cut:
        video_file = ffmpeg.input(video_in)
        video = video_file.video.filter(
            "select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
        audio = video_file.audio.filter(
            "aselect", f'({between_str})').filter("asetpts", "N/SR/TB")

        output_video = f'./videos_out/{video_file_name}.mp4'
        ffmpeg.concat(video, audio, v=1, a=1).output(
            output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
    else:
        output_video = video_in

    tokens = [(token[2:], token[0] if token[0] != " " else None)
              for token in filtered]

    total_cuts_since_reboot += 1
    ping("video_cuts")
    print("\n\ntotal_cuts_since_reboot: ", total_cuts_since_reboot, "\n\n")
    return (tokens, output_video)


async def query_api(audio_bytes: bytes):
    """
    Query for Huggingface Inference API for Automatic Speech Recognition task
    """
    payload = json.dumps({
        "inputs": base64.b64encode(audio_bytes).decode("utf-8"),
        "parameters": {
            "return_timestamps": "char",
            "chunk_length_s": 10,
            "stride_length_s": [4, 2]
        },
        "options": {"use_gpu": False}
    }).encode("utf-8")
    async with aiohttp.ClientSession() as session:
        async with session.post(API_URL, headers=headers, data=payload) as response:
            return await response.json()


def ping(name):
    url = f'https://huggingface.co/api/telemetry/spaces/radames/edit-video-by-editing-text/{name}'
    print("ping: ", url)

    async def req():
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as response:
                print("pong: ", response.status)
    asyncio.create_task(req())


# ---- Gradio Layout -----
video_in = gr.Video(label="Video file")
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
video_out = gr.Video(label="Video Out")
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
examples = gr.components.Dataset(
    components=[video_in], samples=VIDEOS, type="index")

demo = gr.Blocks(enable_queue=True, css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
    transcription_var = gr.Variable()
    timestamps_var = gr.Variable()
    with gr.Row():
        with gr.Column():
            gr.Markdown('''
            # Edit Video By Editing Text
            This project is a quick proof of concept of a simple video editor where the edits
            are made by editing the audio transcription.
            Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
            with a fine tuned [Wav2Vec2 model using Connectionist Temporal Classification (CTC)](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self)
            you can predict not only the text transcription but also the [character or word base timestamps](https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline.__call__.return_timestamps)
            ''')

    with gr.Row():

        examples.render()

        def load_example(id):
            video = SAMPLES[id]['video']
            transcription = SAMPLES[id]['transcription'].lower()
            timestamps = SAMPLES[id]['timestamps']

            return (video, transcription, transcription, timestamps)

        examples.click(
            load_example,
            inputs=[examples],
            outputs=[video_in, text_in, transcription_var, timestamps_var],
            queue=False)
    with gr.Row():
        with gr.Column():
            video_in.render()
            transcribe_btn = gr.Button("Transcribe Audio")
            transcribe_btn.click(speech_to_text, [video_in], [
                text_in, transcription_var, timestamps_var])

    with gr.Row():
        gr.Markdown('''
        ### Now edit as text
        After running the video transcription, you can make cuts to the text below (only cuts, not additions!)''')

    with gr.Row():
        with gr.Column():
            text_in.render()
            with gr.Row():
                cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
                # send audio path and hidden variables
                cut_btn.click(cut_timestamps_to_video, [
                    video_in, transcription_var, text_in, timestamps_var], [diff_out, video_out])

                reset_transcription = gr.Button(
                    "Reset to last trascription", elem_id="reset_btn")
                reset_transcription.click(
                    lambda x: x, transcription_var, text_in)
        with gr.Column():
            video_out.render()
            diff_out.render()
    with gr.Row():
        gr.Markdown('''
        #### Video Credits

        1. [Cooking](https://vimeo.com/573792389)
        1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
        1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
        ''')

if __name__ == "__main__":
    demo.launch(debug=True)