Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
import torch | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
summary = pipeline(task="summarization", model="facebook/bart-large-cnn", device=device) | |
oracle = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli", device=device) | |
labels = ["merge","revert","fix","feature","update","refactor","test","security","documentation","style"] | |
def do_the_thing(input, labels): | |
#print(labels) | |
summarisation = summary(input)[0]['summary_text'] | |
zsc_results = oracle(sequences=[input, summarisation], candidate_labels=labels, multi_label=False, batch_size=2) | |
classifications_input = {} | |
for i in range(len(labels)): | |
classifications_input.update({zsc_results[0]['labels'][i]: zsc_results[0]['scores'][i]}) | |
i+=1 | |
#zsc_results_summary = oracle(sequences=summarisation, candidate_labels=labels, multi_label=False) | |
classifications_summary = {} | |
for i in range(len(labels)): | |
classifications_summary.update({zsc_results[1]['labels'][i]: zsc_results[1]['scores'][i]}) | |
i+=1 | |
return [summarisation, classifications_input, classifications_summary] | |
with gr.Blocks() as frontend: | |
gr.Markdown(f"## Git Commit Classifier\n\nThis tool is to take the notes from a commit, summarise and classify the original and the summary.\n\nTo get the git commit notes, clone the repo and the run `git log --all --pretty='format:Subject: %s%nBody: %b%n-----%n'`") | |
input_value = gr.TextArea(label="Notes to Summarise") | |
btn_submit = gr.Button(value="Summarise and Classify") | |
with gr.Row(): | |
with gr.Column(): | |
input_labels = gr.Dropdown(label="Classification Labels", choices=labels, multiselect=True, value=labels, interactive=True, allow_custom_value=True, info="Labels to classify the original text and summary") | |
with gr.Column(): | |
output_summary_text = gr.TextArea(label="Summary of Notes") | |
with gr.Row(): | |
with gr.Column(): | |
output_original_labels = gr.Label(label="Original Text Classification") | |
with gr.Column(): | |
output_summary_labels = gr.Label(label="Summary Text Classification") | |
btn_submit.click(fn=do_the_thing, inputs=[input_value, input_labels], outputs=[output_summary_text, output_original_labels, output_summary_labels]) | |
frontend.launch() |