Classifier / app.py
Taranosaurus's picture
Created first version of app.py
f0b38f2
raw
history blame
2.41 kB
from transformers import pipeline
import gradio as gr
import torch
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
summary = pipeline(task="summarization", model="facebook/bart-large-cnn", device=device)
oracle = pipeline(task="zero-shot-classification", model="facebook/bart-large-mnli", device=device)
labels = ["merge","revert","fix","feature","update","refactor","test","security","documentation","style"]
def do_the_thing(input, labels):
#print(labels)
summarisation = summary(input)[0]['summary_text']
zsc_results = oracle(sequences=[input, summarisation], candidate_labels=labels, multi_label=False, batch_size=2)
classifications_input = {}
for i in range(len(labels)):
classifications_input.update({zsc_results[0]['labels'][i]: zsc_results[0]['scores'][i]})
i+=1
#zsc_results_summary = oracle(sequences=summarisation, candidate_labels=labels, multi_label=False)
classifications_summary = {}
for i in range(len(labels)):
classifications_summary.update({zsc_results[1]['labels'][i]: zsc_results[1]['scores'][i]})
i+=1
return [summarisation, classifications_input, classifications_summary]
with gr.Blocks() as frontend:
gr.Markdown(f"## Git Commit Classifier\n\nThis tool is to take the notes from a commit, summarise and classify the original and the summary.\n\nTo get the git commit notes, clone the repo and the run `git log --all --pretty='format:Subject: %s%nBody: %b%n-----%n'`")
input_value = gr.TextArea(label="Notes to Summarise")
btn_submit = gr.Button(value="Summarise and Classify")
with gr.Row():
with gr.Column():
input_labels = gr.Dropdown(label="Classification Labels", choices=labels, multiselect=True, value=labels, interactive=True, allow_custom_value=True, info="Labels to classify the original text and summary")
with gr.Column():
output_summary_text = gr.TextArea(label="Summary of Notes")
with gr.Row():
with gr.Column():
output_original_labels = gr.Label(label="Original Text Classification")
with gr.Column():
output_summary_labels = gr.Label(label="Summary Text Classification")
btn_submit.click(fn=do_the_thing, inputs=[input_value, input_labels], outputs=[output_summary_text, output_original_labels, output_summary_labels])
frontend.launch()