AIPaperPilot / app.py
Talha812's picture
Update app.py
2e4aae4 verified
# # import streamlit as st
# # import torch
# # from transformers import GPTNeoXForCausalLM, AutoTokenizer
# # from sentence_transformers import SentenceTransformer
# # import faiss
# # import fitz # PyMuPDF
# # from langchain_text_splitters import RecursiveCharacterTextSplitter
# # # 1. Set page config FIRST
# # st.set_page_config(page_title="πŸ“š Smart Book Analyst", layout="wide")
# # # Configuration
# # MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
# # EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
# # DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# # CHUNK_SIZE = 512
# # CHUNK_OVERLAP = 50
# # @st.cache_resource
# # def load_models():
# # try:
# # # Load Granite model
# # tokenizer = AutoTokenizer.from_pretrained(
# # MODEL_NAME,
# # trust_remote_code=True
# # )
# # model = GPTNeoXForCausalLM.from_pretrained(
# # MODEL_NAME,
# # device_map="auto" if DEVICE == "cuda" else None,
# # torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
# # trust_remote_code=True
# # ).eval()
# # # Load sentence transformer for embeddings
# # embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
# # return tokenizer, model, embedder
# # except Exception as e:
# # st.error(f"Model loading failed: {str(e)}")
# # st.stop()
# # tokenizer, model, embedder = load_models()
# # # Text processing
# # def process_text(text):
# # splitter = RecursiveCharacterTextSplitter(
# # chunk_size=CHUNK_SIZE,
# # chunk_overlap=CHUNK_OVERLAP,
# # length_function=len
# # )
# # return splitter.split_text(text)
# # # PDF extraction
# # def extract_pdf_text(uploaded_file):
# # try:
# # doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
# # return "\n".join([page.get_text() for page in doc])
# # except Exception as e:
# # st.error(f"PDF extraction error: {str(e)}")
# # return ""
# # # Summarization function
# # def generate_summary(text):
# # chunks = process_text(text)[:10]
# # summaries = []
# # for chunk in chunks:
# # prompt = f"""<|user|>
# # Summarize this text section focusing on key themes, characters, and plot points:
# # {chunk[:2000]}
# # <|assistant|>
# # """
# # inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
# # outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.3)
# # summaries.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
# # combined = "\n".join(summaries)
# # final_prompt = f"""<|user|>
# # Combine these section summaries into a coherent book summary:
# # {combined}
# # <|assistant|>
# # The comprehensive summary is:"""
# # inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
# # outputs = model.generate(**inputs, max_new_tokens=500, temperature=0.5)
# # return tokenizer.decode(outputs[0], skip_special_tokens=True).split(":")[-1].strip()
# # # FAISS index creation
# # def build_faiss_index(texts):
# # embeddings = embedder.encode(texts, show_progress_bar=False)
# # dimension = embeddings.shape[1]
# # index = faiss.IndexFlatIP(dimension)
# # faiss.normalize_L2(embeddings)
# # index.add(embeddings)
# # return index
# # # Answer generation
# # def generate_answer(query, context):
# # prompt = f"""<|user|>
# # Using this context: {context}
# # Answer the question precisely and truthfully. If unsure, say "I don't know".
# # Question: {query}
# # <|assistant|>
# # """
# # inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
# # outputs = model.generate(
# # **inputs,
# # max_new_tokens=300,
# # temperature=0.4,
# # top_p=0.9,
# # repetition_penalty=1.2,
# # do_sample=True
# # )
# # return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
# # # Streamlit UI
# # st.title("πŸ“š AI-Powered Book Analysis System")
# # uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
# # if uploaded_file:
# # with st.spinner("πŸ“– Analyzing book content..."):
# # try:
# # if uploaded_file.type == "application/pdf":
# # text = extract_pdf_text(uploaded_file)
# # else:
# # text = uploaded_file.read().decode()
# # chunks = process_text(text)
# # st.session_state.docs = chunks
# # st.session_state.index = build_faiss_index(chunks)
# # with st.expander("πŸ“ Book Summary", expanded=True):
# # summary = generate_summary(text)
# # st.write(summary)
# # except Exception as e:
# # st.error(f"Processing failed: {str(e)}")
# # if 'index' in st.session_state and st.session_state.index:
# # query = st.text_input("Ask about the book:")
# # if query:
# # with st.spinner("πŸ” Searching for answers..."):
# # try:
# # query_embed = embedder.encode([query])
# # faiss.normalize_L2(query_embed)
# # distances, indices = st.session_state.index.search(query_embed, k=3)
# # context = "\n".join([st.session_state.docs[i] for i in indices[0]])
# # answer = generate_answer(query, context)
# # st.subheader("Answer")
# # st.markdown(f"```\n{answer}\n```")
# # st.caption("Retrieved context confidence: {:.2f}".format(distances[0][0]))
# # except Exception as e:
# # st.error(f"Query failed: {str(e)}")
# import streamlit as st
# import torch
# from transformers import GPTNeoXForCausalLM, AutoTokenizer
# from sentence_transformers import SentenceTransformer
# import faiss
# import fitz
# from langchain_text_splitters import RecursiveCharacterTextSplitter
# # Set page config FIRST
# st.set_page_config(page_title="πŸ“š Smart Book Analyst", layout="wide")
# # Configuration
# MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
# EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# CHUNK_SIZE = 1024 # Increased chunk size for better performance
# CHUNK_OVERLAP = 100
# MAX_SUMMARY_CHUNKS = 5 # Reduced from 10 to 5 for faster processing
# @st.cache_resource
# def load_models():
# try:
# # Load model with optimized settings
# tokenizer = AutoTokenizer.from_pretrained(
# MODEL_NAME,
# trust_remote_code=True
# )
# model = GPTNeoXForCausalLM.from_pretrained(
# MODEL_NAME,
# device_map="auto",
# torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
# trust_remote_code=True,
# low_cpu_mem_usage=True
# ).eval()
# # Load embedder with faster model
# embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
# embedder.max_seq_length = 256 # Reduce embedding dimension
# return tokenizer, model, embedder
# except Exception as e:
# st.error(f"Model loading failed: {str(e)}")
# st.stop()
# tokenizer, model, embedder = load_models()
# def process_text(text):
# splitter = RecursiveCharacterTextSplitter(
# chunk_size=CHUNK_SIZE,
# chunk_overlap=CHUNK_OVERLAP,
# length_function=len
# )
# return splitter.split_text(text)
# def extract_pdf_text(uploaded_file):
# try:
# doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
# return "\n".join(page.get_text() for page in doc)
# except Exception as e:
# st.error(f"PDF extraction error: {str(e)}")
# return ""
# def generate_summary(text):
# chunks = process_text(text)[:MAX_SUMMARY_CHUNKS]
# if not chunks:
# return "No meaningful content found."
# progress_bar = st.progress(0)
# summaries = []
# for i, chunk in enumerate(chunks):
# progress_bar.progress((i+1)/len(chunks), text=f"Processing chunk {i+1}/{len(chunks)}...")
# prompt = f"""<|user|>
# Summarize key points in 2 sentences:
# {chunk[:1500]}
# <|assistant|>
# """
# inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
# outputs = model.generate(
# **inputs,
# max_new_tokens=150,
# temperature=0.2,
# do_sample=False # Disable sampling for faster generation
# )
# summaries.append(tokenizer.decode(outputs[0], skip_special_tokens=True))
# combined = "\n".join(summaries)
# final_prompt = f"""<|user|>
# Combine these into a concise summary (3-5 paragraphs):
# {combined}
# <|assistant|>
# Summary:"""
# inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
# outputs = model.generate(
# **inputs,
# max_new_tokens=300,
# temperature=0.3,
# do_sample=False
# )
# return tokenizer.decode(outputs[0], skip_special_tokens=True).split("Summary:")[-1].strip()
# def build_faiss_index(texts):
# embeddings = embedder.encode(texts, show_progress_bar=False, batch_size=32)
# dimension = embeddings.shape[1]
# index = faiss.IndexFlatIP(dimension)
# faiss.normalize_L2(embeddings)
# index.add(embeddings)
# return index
# def generate_answer(query, context):
# prompt = f"""<|user|>
# Context: {context[:2000]}
# Q: {query}
# A:"""
# inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(DEVICE)
# outputs = model.generate(
# **inputs,
# max_new_tokens=200,
# temperature=0.3,
# top_p=0.85,
# repetition_penalty=1.1,
# do_sample=True
# )
# return tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
# # Streamlit UI
# st.title("πŸ“š AI-Powered Book Analysis System")
# uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
# if uploaded_file:
# with st.spinner("πŸ“– Analyzing book content..."):
# try:
# if uploaded_file.type == "application/pdf":
# text = extract_pdf_text(uploaded_file)
# else:
# text = uploaded_file.read().decode()
# if not text.strip():
# st.error("Uploaded file appears to be empty")
# st.stop()
# chunks = process_text(text)
# st.session_state.docs = chunks
# st.session_state.index = build_faiss_index(chunks)
# with st.expander("πŸ“ Book Summary", expanded=True):
# summary = generate_summary(text)
# st.write(summary)
# except Exception as e:
# st.error(f"Processing failed: {str(e)}")
# if 'index' in st.session_state and st.session_state.index:
# query = st.text_input("Ask about the book:")
# if query:
# with st.spinner("πŸ” Searching for answers..."):
# try:
# query_embed = embedder.encode([query])
# faiss.normalize_L2(query_embed)
# distances, indices = st.session_state.index.search(query_embed, k=2)
# context = "\n".join([st.session_state.docs[i] for i in indices[0]])
# answer = generate_answer(query, context)
# st.subheader("Answer")
# st.markdown(f"```\n{answer}\n```")
# st.caption(f"Confidence: {distances[0][0]:.2f}")
# except Exception as e:
# st.error(f"Query failed: {str(e)}")
import streamlit as st
import torch
from transformers import GPTNeoXForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
import faiss
import fitz
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Set page config first
st.set_page_config(page_title="πŸ“š Smart Book Analyst", layout="wide")
# Configuration
MODEL_NAME = "ibm-granite/granite-3.1-1b-a400m-instruct"
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
CHUNK_SIZE = 1024
CHUNK_OVERLAP = 100
MAX_SUMMARY_CHUNKS = 5
@st.cache_resource
def load_models():
try:
# Load model with correct tokenizer mapping
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
padding_side="left" # Crucial for generation quality
)
tokenizer.pad_token = tokenizer.eos_token
model = GPTNeoXForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
).eval()
# Configure embedder properly
embedder = SentenceTransformer(EMBED_MODEL, device=DEVICE)
embedder.max_seq_length = 512
return tokenizer, model, embedder
except Exception as e:
st.error(f"Model loading failed: {str(e)}")
st.stop()
tokenizer, model, embedder = load_models()
def process_text(text):
splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
length_function=len
)
return splitter.split_text(text)
def extract_pdf_text(uploaded_file):
try:
doc = fitz.open(stream=uploaded_file.read(), filetype="pdf")
return "\n".join(page.get_text() for page in doc)
except Exception as e:
st.error(f"PDF extraction error: {str(e)}")
return ""
def generate_summary(text):
chunks = process_text(text)[:MAX_SUMMARY_CHUNKS]
if not chunks:
return "No meaningful content found."
progress_bar = st.progress(0)
summaries = []
for i, chunk in enumerate(chunks):
# Proper progress text formatting
progress_bar.progress((i+1)/len(chunks),
text=f"Processing section {i+1}/{len(chunks)}...")
prompt = f"""<|user|>
Summarize the key points from this text section in 3 bullet points:
{chunk[:1500]}
<|assistant|>
"""
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=1024,
truncation=True
).to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id # Critical fix
)
decoded = tokenizer.decode(
outputs[0],
skip_special_tokens=True
).split("<|assistant|>")[-1].strip()
summaries.append(decoded)
combined = "\n\n".join(summaries)
final_prompt = f"""<|user|>
Combine these bullet points into a coherent 3-paragraph summary:
{combined}
<|assistant|>
Here is the comprehensive summary:"""
inputs = tokenizer(final_prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=400,
temperature=0.5,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(
outputs[0],
skip_special_tokens=True
).split("Here is the comprehensive summary:")[-1].strip()
def build_faiss_index(texts):
embeddings = embedder.encode(
texts,
show_progress_bar=False,
batch_size=16,
convert_to_tensor=True
).cpu().numpy()
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
faiss.normalize_L2(embeddings)
index.add(embeddings)
return index
def generate_answer(query, context):
prompt = f"""<|user|>
Based on this context:
{context[:2000]}
Answer this question concisely: {query}
<|assistant|>
"""
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=1024,
truncation=True
).to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.4,
top_p=0.95,
repetition_penalty=1.15,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3 # Prevent repetition
)
return tokenizer.decode(
outputs[0],
skip_special_tokens=True
).split("<|assistant|>")[-1].strip()
# Streamlit UI
st.title("πŸ“š AI-Powered Book Analysis System")
uploaded_file = st.file_uploader("Upload book (PDF or TXT)", type=["pdf", "txt"])
if uploaded_file:
with st.spinner("πŸ“– Analyzing book content..."):
try:
if uploaded_file.type == "application/pdf":
text = extract_pdf_text(uploaded_file)
else:
text = uploaded_file.read().decode()
if not text.strip():
st.error("Uploaded file is empty")
st.stop()
chunks = process_text(text)
st.session_state.docs = chunks
st.session_state.index = build_faiss_index(chunks)
with st.expander("πŸ“ Book Summary", expanded=True):
summary = generate_summary(text)
st.write(summary)
except Exception as e:
st.error(f"Processing failed: {str(e)}")
if 'index' in st.session_state and st.session_state.index:
query = st.text_input("Ask about the book:")
if query:
with st.spinner("πŸ” Searching for answers..."):
try:
query_embed = embedder.encode([query])
faiss.normalize_L2(query_embed)
distances, indices = st.session_state.index.search(query_embed, k=3)
context = "\n".join([st.session_state.docs[i] for i in indices[0]])
answer = generate_answer(query, context)
st.subheader("Answer")
st.markdown(f"```\n{answer}\n```")
st.caption(f"Confidence score: {distances[0][0]:.2f}")
except Exception as e:
st.error(f"Query failed: {str(e)}")