Spaces:
Sleeping
Sleeping
File size: 10,022 Bytes
4985c2b ca40422 4985c2b fd142b2 4985c2b e9d8154 4985c2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import os
import time
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain import PromptTemplate
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import requests
from PIL import Image
import torch
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
# Chat History:
# {chat_history}
# Follow Up Input: {question}
# Standalone question:"""
# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
# template = """
# You are given the following extracted parts of a long document and a question. Provide a short structured answer.
# If you don't know the answer, look on the web. Don't try to make up an answer.
# Question: {question}
# =========
# {context}
# =========
# Answer in Markdown:"""
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')
model_name = "google/matcha-chartqa"
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def filter_output(output):
return output.replace("<0x0A>", "")
def chart_qa(image, question):
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
predictions = model.generate(**inputs, max_new_tokens=512)
return filter_output(processor.decode(predictions[0], skip_special_tokens=True))
def loading_pdf():
return "Loading..."
def pdf_changes(pdf_doc, open_ai_key):
if open_ai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
global qa
qa = ConversationalRetrievalChain.from_llm(
llm=OpenAI(temperature=0.5),
retriever=retriever,
return_source_documents=True)
return "Ready"
else:
return "You forgot OpenAI API key"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def infer(question, history):
res = []
for human, ai in history[:-1]:
pair = (human, ai)
res.append(pair)
chat_history = res
#print(chat_history)
query = question
result = qa({"question": query, "chat_history": chat_history})
#print(result)
return result["answer"]
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;">
<h1>SpreadSight Demo</h1>
<p style="text-align: center;">Please specify OpenAI Key before use</p>
</div>
"""
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.HTML(title)
# with gr.Column():
# openai_key = gr.Textbox(label="You OpenAI API key", type="password")
# pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
# with gr.Row():
# langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
# load_pdf = gr.Button("Load pdf to langchain")
# chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
# submit_btn = gr.Button("Send Message")
# load_pdf.click(loading_pdf, None, langchain_status, queue=False)
# load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
# question.submit(add_text, [chatbot, question], [chatbot, question]).then(
# bot, chatbot, chatbot
# )
# submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
# bot, chatbot, chatbot)
# demo.launch()
"""functions"""
def load_file():
return "Loading..."
def load_xlsx(name):
import pandas as pd
xls_file = rf'{name}'
data = pd.read_excel(xls_file)
return data
def table_loader(table_file, open_ai_key):
import os
from langchain.llms import OpenAI
from langchain.agents import create_pandas_dataframe_agent
from pandas import read_csv
global agent
if open_ai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
else:
return "Enter API"
if table_file.name.endswith('.xlsx') or table_file.name.endswith('.xls'):
data = load_xlsx(table_file.name)
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
return "Ready!"
elif table_file.name.endswith('.csv'):
data = read_csv(table_file.name)
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
return "Ready!"
else:
return "Wrong file format! Upload excel file or csv!"
def run(query):
from langchain.callbacks import get_openai_callback
with get_openai_callback() as cb:
response = (agent.run(query))
costs = (f"Total Cost (USD): ${cb.total_cost}")
output = f'{response} \n {costs}'
return output
def respond(message, chat_history):
import time
bot_message = run(message)
chat_history.append((message, bot_message))
time.sleep(0.5)
return "", chat_history
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
key = gr.Textbox(
show_label=False,
placeholder="Your OpenAI key",
type = 'password',
).style(container=False)
# PDF processing tab
with gr.Tab("Files"):
with gr.Row():
with gr.Column(scale=0.5):
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Load pdf to Spreadsight")
with gr.Column(scale=0.5):
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
with gr.Row():
with gr.Column(scale=1):
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
with gr.Row():
with gr.Column(scale=0.85):
question = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter, or upload an image",
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
clr_btn = gr.Button("Clear!")
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc, key], outputs=[langchain_status], queue=True)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
# XLSX and CSV processing tab
with gr.Tab("Spreadsheets"):
with gr.Row():
with gr.Column(scale=0.5):
status_sh = gr.Textbox(label="Status", placeholder="", interactive=False)
load_table = gr.Button("Load csv|xlsx to langchain")
with gr.Column(scale=0.5):
raw_table = gr.File(label="Load a table file (xls or csv)", file_types=['.csv, xlsx, xls'], type="file")
with gr.Row():
with gr.Column(scale=1):
chatbot_sh = gr.Chatbot([], elem_id="chatbot").style(height=350)
with gr.Row():
with gr.Column(scale=0.85):
question_sh = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter, or upload an image",
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
clr_btn = gr.Button("Clear!")
load_table.click(load_file, None, status_sh, queue=False)
load_table.click(table_loader, inputs=[raw_table, key], outputs=[status_sh], queue=False)
question_sh.submit(respond, [question_sh, chatbot_sh], [question_sh, chatbot_sh])
clr_btn.click(lambda: None, None, chatbot_sh, queue=False)
with gr.Tab("Charts"):
image = gr.Image(type="pil", label="Chart")
question = gr.Textbox(label="Question")
load_chart = gr.Button("Load chart and question!")
answer = gr.Textbox(label="Model Output")
load_chart.click(chart_qa, [image, question], answer)
demo.queue(concurrency_count=3)
demo.launch() |