|
import streamlit as st |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
@st.cache_resource |
|
def load_model_and_tokenizer(): |
|
model_name_or_path = "m42-health/med42-70b" |
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
return model, tokenizer |
|
|
|
|
|
@st.cache_data |
|
def generate_response(prompt): |
|
prompt_template = f''' |
|
<|system|>: You are a helpful medical assistant created by M42 Health in the UAE. |
|
<|prompter|>:{prompt} |
|
<|assistant|>: |
|
''' |
|
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() |
|
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512) |
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
def main(): |
|
st.title("Med42 - Clinical Large Language Model") |
|
model, tokenizer = load_model_and_tokenizer() |
|
|
|
prompt = st.text_area("Enter your medical query:") |
|
if st.button("Submit"): |
|
with st.spinner("Generating response..."): |
|
response = generate_response(prompt) |
|
st.write(response) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|