import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer @st.cache_resource def load_model_and_tokenizer(): model_name_or_path = "m42-health/med42-70b" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) return model, tokenizer # Function to generate the response @st.cache_data def generate_response(prompt): prompt_template = f''' <|system|>: You are a helpful medical assistant created by M42 Health in the UAE. <|prompter|>:{prompt} <|assistant|>: ''' input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Streamlit app def main(): st.title("Med42 - Clinical Large Language Model") model, tokenizer = load_model_and_tokenizer() prompt = st.text_area("Enter your medical query:") if st.button("Submit"): with st.spinner("Generating response..."): response = generate_response(prompt) st.write(response) if __name__ == "__main__": main()