File size: 10,512 Bytes
83cb829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""
interactive_demo.py
Entry point for all VLM-Bench interactive demos; specify model and get a gradio UI where you can chat with it!
This file is heavily adapted from the script used to serve models in the LLaVa repo:
https://github.com/haotian-liu/LLaVA/blob/main/llava/serve/model_worker.py. It is
modified to ensure compatibility with our Prismatic models.
"""
import asyncio
import json
import os
import threading
import time
import uuid
from dataclasses import dataclass
from functools import partial
from pathlib import Path
from typing import Union
import draccus
import requests
import torch
import uvicorn
from accelerate.utils import set_seed
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import StreamingResponse
from llava.constants import WORKER_HEART_BEAT_INTERVAL
from llava.mm_utils import load_image_from_base64
from llava.utils import server_error_msg
from torchvision.transforms import Compose
from vlbench.models import load_vlm
from vlbench.overwatch import initialize_overwatch
from serve import INTERACTION_MODES_MAP, MODEL_ID_TO_NAME
GB = 1 << 30
worker_id = str(uuid.uuid4())[:6]
global_counter = 0
model_semaphore = None
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
class ModelWorker:
def __init__(self, controller_addr, worker_addr, worker_id, no_register, vlm, model_base, model_name):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
self.model_name = model_name
# logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
self.vlm = vlm
self.tokenizer, self.model, self.image_processor, self.context_len = (
vlm.tokenizer,
vlm.model,
vlm.image_processor,
vlm.max_length,
)
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(target=heart_beat_worker, args=(self,))
self.heart_beat_thread.start()
def register_to_controller(self):
# logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {"worker_name": self.worker_addr, "check_heart_beat": True, "worker_status": self.get_status()}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
# logger.info(f"Send heart beat. Models: {[self.model_name]}. "
# f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
# f"global_counter: {global_counter}")
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(
url, json={"worker_name": self.worker_addr, "queue_length": self.get_queue_length()}, timeout=5
)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException:
pass
# logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if model_semaphore is None:
return 0
else:
return (
limit_model_concurrency
- model_semaphore._value
+ (len(model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
)
def get_status(self):
return {
"model_names": [self.model_name],
"speed": 1,
"queue_length": self.get_queue_length(),
}
@torch.inference_mode()
def generate_stream(self, params):
prompt = params["prompt"]
ori_prompt = prompt
images = params.get("images", None)
temperature = params.get("temperature", 0.2)
max_new_tokens = params.get("max_new_tokens", 2048)
interaction_mode = INTERACTION_MODES_MAP[params.get("interaction_mode", "Chat")]
if temperature != 0:
self.vlm.set_generate_kwargs(
{"do_sample": True, "max_new_tokens": max_new_tokens, "temperature": temperature}
)
else:
self.vlm.set_generate_kwargs({"do_sample": False, "max_new_tokens": max_new_tokens})
if images is not None and len(images) == 1:
images = [load_image_from_base64(image) for image in images]
else:
raise NotImplementedError("Only supports queries with one image for now")
if interaction_mode == "chat":
question_prompt = [prompt]
else:
prompt_fn = self.vlm.get_prompt_fn(interaction_mode)
if interaction_mode != "captioning":
question_prompt = [prompt_fn(prompt)]
else:
question_prompt = [prompt_fn()]
if isinstance(self.image_processor, Compose) or hasattr(self.image_processor, "is_prismatic"):
# This is a standard `torchvision.transforms` object or custom PrismaticVLM wrapper
pixel_values = self.image_processor(images[0].convert("RGB"))
else:
# Assume `image_transform` is a HF ImageProcessor...
pixel_values = self.image_processor(images[0].convert("RGB"), return_tensors="pt")["pixel_values"][0]
generated_text = self.vlm.generate_answer(torch.unsqueeze(pixel_values.cuda(), 0), question_prompt)[0]
generated_text = generated_text.split("USER")[0].split("ASSISTANT")[0]
yield json.dumps({"text": ori_prompt + generated_text, "error_code": 0}).encode() + b"\0"
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
app = FastAPI()
def release_model_semaphore(fn=None):
model_semaphore.release()
if fn is not None:
fn()
@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
global model_semaphore, global_counter
global_counter += 1
params = await request.json()
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(limit_model_concurrency)
await model_semaphore.acquire()
worker.send_heart_beat()
generator = worker.generate_stream_gate(params)
background_tasks = BackgroundTasks()
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_get_status")
async def get_status(request: Request):
return worker.get_status()
# Initialize Overwatch =>> Wraps `logging.Logger` and `accelerate.PartialState`
overwatch = initialize_overwatch(__name__)
@dataclass
class DemoConfig:
# fmt: off
# === Model Parameters =>> Quartz ===
model_family: str = "quartz" # Model family to load from in < `quartz` | `llava-v15` | ... >
model_id: str = "llava-v1.5-7b" # Model ID to load and run (instance of `model_family`)
model_dir: Path = ( # Path to model checkpoint to load --> should be self-contained
"resize-naive-siglip-vit-l-16-384px-no-align-2-epochs+13b+stage-finetune+x7"
)
# === Model Parameters =>> Official LLaVa ===
# model_family: str = "llava-v15"
# model_id: str = "llava-v1.5-13b"
# model_dir: Path = "liuhaotian/llava-v1.5-13b"
# Model Worker Parameters
host: str = "0.0.0.0"
port: int = 40000
controller_address: str = "http://localhost:10000"
model_base: str = "llava-v15"
limit_model_concurrency: int = 5
stream_interval: int = 1
no_register: bool = False
# Inference Parameters
device_batch_size: int = 1 # Device Batch Size set to 1 until LLaVa/HF LLaMa fixes bugs!
num_workers: int = 2 # Number of Dataloader Workers (on each process)
# HF Hub Credentials (for LLaMa-2)
hf_token: Union[str, Path] = Path(".hf_token") # Environment variable or Path to HF Token
# Randomness
seed: int = 21 # Random Seed (for reproducibility)
def __post_init__(self) -> None:
if self.model_family == "quartz":
self.model_name = MODEL_ID_TO_NAME[str(self.model_dir)]
self.run_dir = Path("/mnt/fsx/x-onyx-vlms/runs") / self.model_dir
elif self.model_family in {"instruct-blip", "llava", "llava-v15"}:
self.model_name = MODEL_ID_TO_NAME[self.model_id]
self.run_dir = self.model_dir
else:
raise ValueError(f"Run Directory for `{self.model_family = }` does not exist!")
self.worker_address = f"http://localhost:{self.port}"
# fmt: on
@draccus.wrap()
def interactive_demo(cfg: DemoConfig):
# overwatch.info(f"Starting Evaluation for Dataset `{cfg.dataset.dataset_id}` w/ Model `{cfg.model_id}`")
set_seed(cfg.seed)
# Build the VLM --> Download/Load Pretrained Model from Checkpoint
overwatch.info("Initializing VLM =>> Bundling Models, Image Processors, and Tokenizer")
hf_token = cfg.hf_token.read_text().strip() if isinstance(cfg.hf_token, Path) else os.environ[cfg.hf_token]
vlm = load_vlm(cfg.model_family, cfg.model_id, cfg.run_dir, hf_token=hf_token)
global worker
global limit_model_concurrency
limit_model_concurrency = cfg.limit_model_concurrency
worker = ModelWorker(
cfg.controller_address, cfg.worker_address, worker_id, cfg.no_register, vlm, cfg.model_base, cfg.model_name
)
uvicorn.run(app, host=cfg.host, port=cfg.port, log_level="info")
if __name__ == "__main__":
interactive_demo()
|