justram's picture
Upload folder using huggingface_hub
fef9918 verified
raw
history blame
1.63 kB
import requests
import streamlit as st
from streamlit_lottie import st_lottie
from bokeh.embed import components
from bokeh_plot import create_plot
@st.cache_data()
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
st.set_page_config(
page_title="AToMiC2024 Images (Sampled 50k)",
page_icon="⚛️",
layout="wide",
initial_sidebar_state="auto",
menu_items={'About': '## UMAP Embeddings of AToMiC2024 images'}
)
if __name__ == "__main__":
col1, col2 = st.columns([0.15, 0.85])
with col1:
lottie = load_lottieurl("https://lottie.host/de47fd4c-99cb-48a7-ae10-59d4eb8e4dbe/bXMpZN95tA.json")
st_lottie(lottie)
with col2:
st.write(
"""
## AToMiC Image Explorer
### Subsampled AToMiC Images using [CLIP-ViT-BigG](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
- **Subsampling Procedure:** Hierarchical K-Means [10, 10, 10, 10], randomly sampled 50 from the leaf clusters -> random sample 25k for visualization.
- Original [Image Collection](https://huggingface.co/datasets/TREC-AToMiC/AToMiC-Images-v0.2)
- Prebuilt [Embeddings/Index](https://huggingface.co/datasets/TREC-AToMiC/AToMiC-Baselines/tree/main/indexes)
- Questions? Leave an issue at our [repo](https://github.com/TREC-AToMiC/AToMiC).
- It takes a few minutes to render the plot.
"""
)
# Generate the Bokeh plot
bokeh_plot = create_plot()
st.bokeh_chart(bokeh_plot, use_container_width=False)