Upload stuff_model/df_update.py with huggingface_hub
Browse files- stuff_model/df_update.py +650 -0
stuff_model/df_update.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import polars as pl
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
|
5 |
+
loaded_model = joblib.load('joblib_model/barrel_model.joblib')
|
6 |
+
in_zone_model = joblib.load('joblib_model/in_zone_model_knn_20240410.joblib')
|
7 |
+
attack_zone_model = joblib.load('joblib_model/model_attack_zone.joblib')
|
8 |
+
xwoba_model = joblib.load('joblib_model/xwoba_model.joblib')
|
9 |
+
px_model = joblib.load('joblib_model/linear_reg_model_x.joblib')
|
10 |
+
pz_model = joblib.load('joblib_model/linear_reg_model_z.joblib')
|
11 |
+
|
12 |
+
|
13 |
+
class df_update:
|
14 |
+
def __init__(self):
|
15 |
+
pass
|
16 |
+
|
17 |
+
def update(self, df_clone: pl.DataFrame):
|
18 |
+
|
19 |
+
df = df_clone.clone()
|
20 |
+
# Assuming px_model is defined and df is your DataFrame
|
21 |
+
hit_codes = ['single',
|
22 |
+
'double','home_run', 'triple']
|
23 |
+
|
24 |
+
ab_codes = ['single', 'strikeout', 'field_out',
|
25 |
+
'grounded_into_double_play', 'fielders_choice', 'force_out',
|
26 |
+
'double', 'field_error', 'home_run', 'triple',
|
27 |
+
'double_play',
|
28 |
+
'fielders_choice_out', 'strikeout_double_play',
|
29 |
+
'other_out','triple_play']
|
30 |
+
|
31 |
+
|
32 |
+
obp_true_codes = ['single', 'walk',
|
33 |
+
'double','home_run', 'triple',
|
34 |
+
'hit_by_pitch', 'intent_walk']
|
35 |
+
|
36 |
+
obp_codes = ['single', 'strikeout', 'walk', 'field_out',
|
37 |
+
'grounded_into_double_play', 'fielders_choice', 'force_out',
|
38 |
+
'double', 'sac_fly', 'field_error', 'home_run', 'triple',
|
39 |
+
'hit_by_pitch', 'double_play', 'intent_walk',
|
40 |
+
'fielders_choice_out', 'strikeout_double_play',
|
41 |
+
'sac_fly_double_play',
|
42 |
+
'other_out','triple_play']
|
43 |
+
|
44 |
+
|
45 |
+
contact_codes = ['In play, no out',
|
46 |
+
'Foul', 'In play, out(s)',
|
47 |
+
'In play, run(s)',
|
48 |
+
'Foul Bunt']
|
49 |
+
|
50 |
+
bip_codes = ['In play, no out', 'In play, run(s)','In play, out(s)']
|
51 |
+
|
52 |
+
|
53 |
+
conditions_barrel = [
|
54 |
+
df['launch_speed'].is_null(),
|
55 |
+
(df['launch_speed'] * 1.5 - df['launch_angle'] >= 117) &
|
56 |
+
(df['launch_speed'] + df['launch_angle'] >= 124) &
|
57 |
+
(df['launch_speed'] >= 98) &
|
58 |
+
(df['launch_angle'] >= 4) & (df['launch_angle'] <= 50)
|
59 |
+
]
|
60 |
+
choices_barrel = [False, True]
|
61 |
+
|
62 |
+
conditions_tb = [
|
63 |
+
(df['event_type'] == 'single'),
|
64 |
+
(df['event_type'] == 'double'),
|
65 |
+
(df['event_type'] == 'triple'),
|
66 |
+
(df['event_type'] == 'home_run')
|
67 |
+
]
|
68 |
+
choices_tb = [1, 2, 3, 4]
|
69 |
+
|
70 |
+
|
71 |
+
conditions_woba = [
|
72 |
+
df['event_type'].is_in(['strikeout', 'field_out', 'sac_fly', 'force_out', 'grounded_into_double_play', 'fielders_choice', 'field_error', 'sac_bunt', 'double_play', 'fielders_choice_out', 'strikeout_double_play', 'sac_fly_double_play', 'other_out']),
|
73 |
+
df['event_type'] == 'walk',
|
74 |
+
df['event_type'] == 'hit_by_pitch',
|
75 |
+
df['event_type'] == 'single',
|
76 |
+
df['event_type'] == 'double',
|
77 |
+
df['event_type'] == 'triple',
|
78 |
+
df['event_type'] == 'home_run'
|
79 |
+
]
|
80 |
+
choices_woba = [0, 0.689, 0.720, 0.881, 1.254, 1.589, 2.048]
|
81 |
+
|
82 |
+
woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch', 'double', 'sac_fly', 'force_out', 'home_run', 'grounded_into_double_play', 'fielders_choice', 'field_error', 'triple', 'sac_bunt', 'double_play', 'fielders_choice_out', 'strikeout_double_play', 'sac_fly_double_play', 'other_out']
|
83 |
+
|
84 |
+
pitch_cat = {'FA': 'Fastball',
|
85 |
+
'FF': 'Fastball',
|
86 |
+
'FT': 'Fastball',
|
87 |
+
'FC': 'Fastball',
|
88 |
+
'FS': 'Off-Speed',
|
89 |
+
'FO': 'Off-Speed',
|
90 |
+
'SI': 'Fastball',
|
91 |
+
'ST': 'Breaking',
|
92 |
+
'SL': 'Breaking',
|
93 |
+
'CU': 'Breaking',
|
94 |
+
'KC': 'Breaking',
|
95 |
+
'SC': 'Off-Speed',
|
96 |
+
'GY': 'Off-Speed',
|
97 |
+
'SV': 'Breaking',
|
98 |
+
'CS': 'Breaking',
|
99 |
+
'CH': 'Off-Speed',
|
100 |
+
'KN': 'Off-Speed',
|
101 |
+
'EP': 'Breaking',
|
102 |
+
'UN': None,
|
103 |
+
'IN': None,
|
104 |
+
'PO': None,
|
105 |
+
'AB': None,
|
106 |
+
'AS': None,
|
107 |
+
'NP': None}
|
108 |
+
|
109 |
+
|
110 |
+
df = df.with_columns([
|
111 |
+
pl.when(df['type_ab'].is_not_null()).then(1).otherwise(0).alias('pa'),
|
112 |
+
pl.when(df['is_pitch']).then(1).otherwise(0).alias('pitches'),
|
113 |
+
pl.when(df['sz_top'] == 0).then(None).otherwise(df['sz_top']).alias('sz_top'),
|
114 |
+
pl.when(df['sz_bot'] == 0).then(None).otherwise(df['sz_bot']).alias('sz_bot'),
|
115 |
+
pl.when(df['zone'] > 0).then(df['zone'] < 10).otherwise(None).alias('in_zone'),
|
116 |
+
pl.Series(px_model.predict(df[['x']].fill_null(0).to_numpy())[:, 0]).alias('px_predict'),
|
117 |
+
pl.Series(pz_model.predict(df[['y']].fill_null(0).to_numpy())[:, 0]).alias('pz_predict'),
|
118 |
+
|
119 |
+
pl.when(df['event_type'].is_in(hit_codes)).then(True).otherwise(False).alias('hits'),
|
120 |
+
pl.when(df['event_type'].is_in(ab_codes)).then(True).otherwise(False).alias('ab'),
|
121 |
+
pl.when(df['event_type'].is_in(obp_true_codes)).then(True).otherwise(False).alias('on_base'),
|
122 |
+
pl.when(df['event_type'].is_in(obp_codes)).then(True).otherwise(False).alias('obp'),
|
123 |
+
pl.when(df['play_description'].is_in(bip_codes)).then(True).otherwise(False).alias('bip'),
|
124 |
+
pl.when(conditions_barrel[0]).then(choices_barrel[0]).when(conditions_barrel[1]).then(choices_barrel[1]).otherwise(None).alias('barrel'),
|
125 |
+
pl.when(df['launch_angle'].is_null()).then(False).when((df['launch_angle'] >= 8) & (df['launch_angle'] <= 32)).then(True).otherwise(None).alias('sweet_spot'),
|
126 |
+
pl.when(df['launch_speed'].is_null()).then(False).when(df['launch_speed'] >= 94.5).then(True).otherwise(None).alias('hard_hit'),
|
127 |
+
pl.when(conditions_tb[0]).then(choices_tb[0]).when(conditions_tb[1]).then(choices_tb[1]).when(conditions_tb[2]).then(choices_tb[2]).when(conditions_tb[3]).then(choices_tb[3]).otherwise(None).alias('tb'),
|
128 |
+
pl.when(conditions_woba[0]).then(choices_woba[0]).when(conditions_woba[1]).then(choices_woba[1]).when(conditions_woba[2]).then(choices_woba[2]).when(conditions_woba[3]).then(choices_woba[3]).when(conditions_woba[4]).then(choices_woba[4]).when(conditions_woba[5]).then(choices_woba[5]).when(conditions_woba[6]).then(choices_woba[6]).otherwise(None).alias('woba'),
|
129 |
+
pl.when((df['play_code'] == 'S') | (df['play_code'] == 'W') | (df['play_code'] == 'T')).then(1).otherwise(0).alias('whiffs'),
|
130 |
+
pl.when((df['play_code'] == 'S') | (df['play_code'] == 'W') | (df['play_code'] == 'T') | (df['play_code'] == 'C')).then(1).otherwise(0).alias('csw'),
|
131 |
+
pl.when(pl.col('is_swing').cast(pl.Boolean)).then(1).otherwise(0).alias('swings'),
|
132 |
+
pl.col('event_type').is_in(['strikeout','strikeout_double_play']).alias('k'),
|
133 |
+
pl.col('event_type').is_in(['walk', 'intent_walk']).alias('bb'),
|
134 |
+
pl.lit(None).alias('attack_zone'),
|
135 |
+
pl.lit(None).alias('woba_pred'),
|
136 |
+
pl.lit(None).alias('woba_pred_contact')
|
137 |
+
|
138 |
+
])
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
df = df.with_columns([
|
144 |
+
pl.when(df['event_type'].is_in(woba_codes)).then(1).otherwise(None).alias('woba_codes'),
|
145 |
+
pl.when(df['event_type'].is_in(woba_codes)).then(1).otherwise(None).alias('xwoba_codes'),
|
146 |
+
pl.when((pl.col('tb') >= 0)).then(df['woba']).otherwise(None).alias('woba_contact'),
|
147 |
+
|
148 |
+
|
149 |
+
])
|
150 |
+
|
151 |
+
df = df.with_columns([
|
152 |
+
pl.Series(in_zone_model.predict(df[['px','pz','sz_top','sz_bot']].fill_null(0).to_numpy())[:]).alias('in_zone_predict'),
|
153 |
+
pl.Series(attack_zone_model.predict(df[['px','pz','sz_top','sz_bot']].fill_null(0).to_numpy())[:]).alias('attack_zone_predict'),
|
154 |
+
|
155 |
+
])
|
156 |
+
|
157 |
+
df = df.with_columns([
|
158 |
+
pl.when(pl.col('px').is_null()).then(pl.col('px_predict')).otherwise(pl.col('px')).alias('px'),
|
159 |
+
pl.when(pl.col('pz').is_null()).then(pl.col('pz_predict')).otherwise(pl.col('pz')).alias('pz'),
|
160 |
+
pl.when(pl.col('in_zone').is_null()).then(pl.col('in_zone_predict')).otherwise(pl.col('in_zone')).alias('in_zone_final'),
|
161 |
+
])
|
162 |
+
|
163 |
+
df = df.with_columns([
|
164 |
+
pl.when(df['launch_speed'].is_null()).then(None).otherwise(df['barrel']).alias('barrel'),
|
165 |
+
pl.lit('average').alias('average'),
|
166 |
+
pl.when(pl.col('in_zone_final') == False).then(True).otherwise(False).alias('out_zone'),
|
167 |
+
pl.when((pl.col('in_zone_final') == True) & (pl.col('swings') == 1)).then(True).otherwise(False).alias('zone_swing'),
|
168 |
+
pl.when((pl.col('in_zone_final') == True) & (pl.col('swings') == 1) & (pl.col('whiffs') == 0)).then(True).otherwise(False).alias('zone_contact'),
|
169 |
+
pl.when((pl.col('in_zone_final') == False) & (pl.col('swings') == 1)).then(True).otherwise(False).alias('ozone_swing'),
|
170 |
+
pl.when((pl.col('in_zone_final') == False) & (pl.col('swings') == 1) & (pl.col('whiffs') == 0)).then(True).otherwise(False).alias('ozone_contact'),
|
171 |
+
pl.when(pl.col('event_type').str.contains('strikeout')).then(True).otherwise(False).alias('k'),
|
172 |
+
pl.when(pl.col('event_type').is_in(['walk', 'intent_walk'])).then(True).otherwise(False).alias('bb'),
|
173 |
+
pl.when(pl.col('attack_zone').is_null()).then(pl.col('attack_zone_predict')).otherwise(pl.col('attack_zone')).alias('attack_zone_final'),
|
174 |
+
|
175 |
+
|
176 |
+
])
|
177 |
+
|
178 |
+
df = df.with_columns([
|
179 |
+
(df['k'].cast(pl.Float32) - df['bb'].cast(pl.Float32)).alias('k_minus_bb'),
|
180 |
+
(df['bb'].cast(pl.Float32) - df['k'].cast(pl.Float32)).alias('bb_minus_k'),
|
181 |
+
(df['launch_speed'] > 0).alias('bip_div'),
|
182 |
+
(df['attack_zone_final'] == 0).alias('heart'),
|
183 |
+
(df['attack_zone_final'] == 1).alias('shadow'),
|
184 |
+
(df['attack_zone_final'] == 2).alias('chase'),
|
185 |
+
(df['attack_zone_final'] == 3).alias('waste'),
|
186 |
+
((df['attack_zone_final'] == 0) & (df['swings'] == 1)).alias('heart_swing'),
|
187 |
+
((df['attack_zone_final'] == 1) & (df['swings'] == 1)).alias('shadow_swing'),
|
188 |
+
((df['attack_zone_final'] == 2) & (df['swings'] == 1)).alias('chase_swing'),
|
189 |
+
((df['attack_zone_final'] == 3) & (df['swings'] == 1)).alias('waste_swing'),
|
190 |
+
((df['attack_zone_final'] == 0) & (df['whiffs'] == 1)).alias('heart_whiff'),
|
191 |
+
((df['attack_zone_final'] == 1) & (df['whiffs'] == 1)).alias('shadow_whiff'),
|
192 |
+
((df['attack_zone_final'] == 2) & (df['whiffs'] == 1)).alias('chase_whiff'),
|
193 |
+
((df['attack_zone_final'] == 3) & (df['whiffs'] == 1)).alias('waste_whiff')
|
194 |
+
])
|
195 |
+
|
196 |
+
|
197 |
+
[0, 0.689, 0.720, 0.881, 1.254, 1.589, 2.048]
|
198 |
+
|
199 |
+
df = df.with_columns([
|
200 |
+
pl.Series(
|
201 |
+
[sum(x) for x in xwoba_model.predict_proba(df[['launch_angle', 'launch_speed']].fill_null(0).to_numpy()[:]) * ([0, 0.881, 1.254, 1.589, 2.048])]
|
202 |
+
).alias('woba_pred_predict')
|
203 |
+
])
|
204 |
+
|
205 |
+
df = df.with_columns([
|
206 |
+
pl.when(pl.col('event_type').is_in(['walk'])).then(0.689)
|
207 |
+
.when(pl.col('event_type').is_in(['hit_by_pitch'])).then(0.720)
|
208 |
+
.when(pl.col('event_type').is_in(['strikeout', 'strikeout_double_play'])).then(0)
|
209 |
+
.otherwise(pl.col('woba_pred_predict')).alias('woba_pred_predict')
|
210 |
+
])
|
211 |
+
|
212 |
+
df = df.with_columns([
|
213 |
+
pl.when(pl.col('woba_codes').is_null()).then(None).otherwise(pl.col('woba_pred_predict')).alias('woba_pred'),
|
214 |
+
pl.when(pl.col('bip')!=1).then(None).otherwise(pl.col('woba_pred_predict')).alias('woba_pred_contact'),
|
215 |
+
])
|
216 |
+
|
217 |
+
df = df.with_columns([
|
218 |
+
pl.when(pl.col('trajectory').is_in(['bunt_popup'])).then(pl.lit('popup'))
|
219 |
+
.when(pl.col('trajectory').is_in(['bunt_grounder'])).then(pl.lit('ground_ball'))
|
220 |
+
.when(pl.col('trajectory').is_in(['bunt_line_drive'])).then(pl.lit('line_drive'))
|
221 |
+
.when(pl.col('trajectory').is_in([''])).then(pl.lit(None))
|
222 |
+
.otherwise(pl.col('trajectory')).alias('trajectory')
|
223 |
+
])
|
224 |
+
|
225 |
+
|
226 |
+
# Create one-hot encoded columns for the trajectory column
|
227 |
+
dummy_df = df.select(pl.col('trajectory')).to_dummies()
|
228 |
+
|
229 |
+
# Rename the one-hot encoded columns
|
230 |
+
dummy_df = dummy_df.rename({
|
231 |
+
'trajectory_fly_ball': 'trajectory_fly_ball',
|
232 |
+
'trajectory_ground_ball': 'trajectory_ground_ball',
|
233 |
+
'trajectory_line_drive': 'trajectory_line_drive',
|
234 |
+
'trajectory_popup': 'trajectory_popup'
|
235 |
+
})
|
236 |
+
|
237 |
+
# Ensure the columns are present in the DataFrame
|
238 |
+
for col in ['trajectory_fly_ball', 'trajectory_ground_ball', 'trajectory_line_drive', 'trajectory_popup']:
|
239 |
+
if col not in dummy_df.columns:
|
240 |
+
dummy_df = dummy_df.with_columns(pl.lit(0).alias(col))
|
241 |
+
|
242 |
+
# Join the one-hot encoded columns back to the original DataFrame
|
243 |
+
df = df.hstack(dummy_df)
|
244 |
+
|
245 |
+
# Check if 'trajectory_null' column exists and drop it
|
246 |
+
if 'trajectory_null' in df.columns:
|
247 |
+
df = df.drop('trajectory_null')
|
248 |
+
|
249 |
+
|
250 |
+
pitch_cat = {'FA': None,
|
251 |
+
'FF': 'Fastball',
|
252 |
+
'FT': 'Fastball',
|
253 |
+
'FC': 'Fastball',
|
254 |
+
'FS': 'Off-Speed',
|
255 |
+
'FO': 'Off-Speed',
|
256 |
+
'SI': 'Fastball',
|
257 |
+
'ST': 'Breaking',
|
258 |
+
'SL': 'Breaking',
|
259 |
+
'CU': 'Breaking',
|
260 |
+
'KC': 'Breaking',
|
261 |
+
'SC': 'Off-Speed',
|
262 |
+
'GY': 'Off-Speed',
|
263 |
+
'SV': 'Breaking',
|
264 |
+
'CS': 'Breaking',
|
265 |
+
'CH': 'Off-Speed',
|
266 |
+
'KN': 'Off-Speed',
|
267 |
+
'EP': 'Breaking',
|
268 |
+
'UN': None,
|
269 |
+
'IN': None,
|
270 |
+
'PO': None,
|
271 |
+
'AB': None,
|
272 |
+
'AS': None,
|
273 |
+
'NP': None}
|
274 |
+
df = df.with_columns(
|
275 |
+
df["pitch_type"]
|
276 |
+
.replace(pitch_cat)
|
277 |
+
.fill_null("Unknown")
|
278 |
+
.alias("pitch_group")
|
279 |
+
)
|
280 |
+
|
281 |
+
df = df.with_columns([
|
282 |
+
|
283 |
+
(-(pl.col('vy0')**2 - (2 * pl.col('ay') * (pl.col('y0') - 17/12)))**0.5).alias('vy_f'),
|
284 |
+
])
|
285 |
+
|
286 |
+
df = df.with_columns([
|
287 |
+
((pl.col('vy_f') - pl.col('vy0')) / pl.col('ay')).alias('t'),
|
288 |
+
])
|
289 |
+
|
290 |
+
df = df.with_columns([
|
291 |
+
(pl.col('vz0') + (pl.col('az') * pl.col('t'))).alias('vz_f'),
|
292 |
+
(pl.col('vx0') + (pl.col('ax') * pl.col('t'))).alias('vx_f')
|
293 |
+
])
|
294 |
+
|
295 |
+
df = df.with_columns([
|
296 |
+
(-np.arctan(pl.col('vz_f') / pl.col('vy_f')) * (180 / np.pi)).alias('vaa'),
|
297 |
+
(-np.arctan(pl.col('vx_f') / pl.col('vy_f')) * (180 / np.pi)).alias('haa')
|
298 |
+
])
|
299 |
+
|
300 |
+
# Mirror horizontal break for left-handed pitchers
|
301 |
+
df = df.with_columns(
|
302 |
+
pl.when(pl.col('pitcher_hand') == 'L')
|
303 |
+
.then(-pl.col('ax'))
|
304 |
+
.otherwise(pl.col('ax'))
|
305 |
+
.alias('ax')
|
306 |
+
)
|
307 |
+
|
308 |
+
# Mirror horizontal break for left-handed pitchers
|
309 |
+
df = df.with_columns(
|
310 |
+
pl.when(pl.col('pitcher_hand') == 'L')
|
311 |
+
.then(-pl.col('hb'))
|
312 |
+
.otherwise(pl.col('hb'))
|
313 |
+
.alias('hb')
|
314 |
+
)
|
315 |
+
|
316 |
+
# Mirror horizontal release point for left-handed pitchers
|
317 |
+
df = df.with_columns(
|
318 |
+
pl.when(pl.col('pitcher_hand') == 'L')
|
319 |
+
.then(pl.col('x0'))
|
320 |
+
.otherwise(-pl.col('x0'))
|
321 |
+
.alias('x0')
|
322 |
+
)
|
323 |
+
|
324 |
+
df = df.with_columns([
|
325 |
+
pl.when(df['swings'].is_null()).then(None).otherwise(df['swings']).alias('is_swing'),
|
326 |
+
pl.when(df['bip'].is_null()).then(None).otherwise(df['bip']).alias('is_bip')])
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
df = df.with_columns([
|
332 |
+
(np.arctan((pl.col("hit_x")*-1 + 125.42) / (198.27 - pl.col("hit_y"))) * 180 / np.pi * 0.75).alias("spray_angle")
|
333 |
+
])
|
334 |
+
|
335 |
+
df = df.with_columns([
|
336 |
+
pl.when(pl.col("batter_hand") == "L")
|
337 |
+
.then(-pl.col("spray_angle"))
|
338 |
+
.otherwise(pl.col("spray_angle"))
|
339 |
+
.alias("adj_spray_angle")
|
340 |
+
]).drop("spray_angle")
|
341 |
+
|
342 |
+
|
343 |
+
df = df.with_columns([
|
344 |
+
pl.when(pl.col("adj_spray_angle").is_not_null() & (pl.col("adj_spray_angle") < -15))
|
345 |
+
.then(pl.lit("oppo"))
|
346 |
+
.when(pl.col("adj_spray_angle").is_not_null() & (pl.col("adj_spray_angle") > 15))
|
347 |
+
.then(pl.lit("pull"))
|
348 |
+
.when(pl.col("adj_spray_angle").is_not_null())
|
349 |
+
.then(pl.lit("straight"))
|
350 |
+
.otherwise(None) # Keep null if adj_spray_angle is null
|
351 |
+
.alias("hit_direction")
|
352 |
+
])
|
353 |
+
|
354 |
+
df = df.with_columns([
|
355 |
+
pl.when(pl.col("hit_direction") == "oppo").then(1).otherwise(None).alias("oppo"),
|
356 |
+
pl.when(pl.col("hit_direction") == "pull").then(1).otherwise(None).alias("pull"),
|
357 |
+
pl.when(pl.col("hit_direction") == "straight").then(1).otherwise(None).alias("straight")
|
358 |
+
])
|
359 |
+
|
360 |
+
df = df.with_columns([
|
361 |
+
pl.when(pl.col("event_type") == "single").then(1).otherwise(0).alias("single"),
|
362 |
+
pl.when(pl.col("event_type") == "double").then(1).otherwise(0).alias("double"),
|
363 |
+
pl.when(pl.col("event_type") == "triple").then(1).otherwise(0).alias("triple"),
|
364 |
+
pl.when(pl.col("event_type") == "home_run").then(1).otherwise(0).alias("home_run")
|
365 |
+
])
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
return df
|
372 |
+
|
373 |
+
# Assuming df is your Polars DataFrame
|
374 |
+
def update_summary(self, df: pl.DataFrame, pitcher: bool = True) -> pl.DataFrame:
|
375 |
+
"""
|
376 |
+
Update summary statistics for pitchers or batters.
|
377 |
+
|
378 |
+
Parameters:
|
379 |
+
df (pl.DataFrame): The input Polars DataFrame containing player statistics.
|
380 |
+
pitcher (bool): A flag indicating whether to calculate statistics for pitchers (True) or batters (False).
|
381 |
+
|
382 |
+
Returns:
|
383 |
+
pl.DataFrame: A Polars DataFrame with aggregated and calculated summary statistics.
|
384 |
+
"""
|
385 |
+
|
386 |
+
# Determine the position based on the pitcher flag
|
387 |
+
if pitcher:
|
388 |
+
position = 'pitcher'
|
389 |
+
else:
|
390 |
+
position = 'batter'
|
391 |
+
|
392 |
+
# Group by position_id and position_name, then aggregate various statistics
|
393 |
+
df_summ = df.group_by([f'{position}_id', f'{position}_name']).agg([
|
394 |
+
pl.col('pa').sum().alias('pa'),
|
395 |
+
pl.col('ab').sum().alias('ab'),
|
396 |
+
pl.col('obp').sum().alias('obp_pa'),
|
397 |
+
pl.col('hits').sum().alias('hits'),
|
398 |
+
pl.col('on_base').sum().alias('on_base'),
|
399 |
+
pl.col('k').sum().alias('k'),
|
400 |
+
pl.col('bb').sum().alias('bb'),
|
401 |
+
pl.col('k_minus_bb').sum().alias('k_minus_bb'),
|
402 |
+
pl.col('bb_minus_k').sum().alias('bb_minus_k'),
|
403 |
+
pl.col('csw').sum().alias('csw'),
|
404 |
+
pl.col('bip').sum().alias('bip'),
|
405 |
+
pl.col('bip_div').sum().alias('bip_div'),
|
406 |
+
pl.col('tb').sum().alias('tb'),
|
407 |
+
pl.col('woba').sum().alias('woba'),
|
408 |
+
pl.col('woba_contact').sum().alias('woba_contact'),
|
409 |
+
pl.col('woba_pred').sum().alias('xwoba'),
|
410 |
+
pl.col('woba_pred_contact').sum().alias('xwoba_contact'),
|
411 |
+
pl.col('woba_codes').sum().alias('woba_codes'),
|
412 |
+
pl.col('xwoba_codes').sum().alias('xwoba_codes'),
|
413 |
+
pl.col('hard_hit').sum().alias('hard_hit'),
|
414 |
+
pl.col('barrel').sum().alias('barrel'),
|
415 |
+
pl.col('sweet_spot').sum().alias('sweet_spot'),
|
416 |
+
pl.col('launch_speed').max().alias('max_launch_speed'),
|
417 |
+
pl.col('launch_speed').quantile(0.90).alias('launch_speed_90'),
|
418 |
+
pl.col('launch_speed').mean().alias('launch_speed'),
|
419 |
+
pl.col('launch_angle').mean().alias('launch_angle'),
|
420 |
+
pl.col('is_pitch').sum().alias('pitches'),
|
421 |
+
pl.col('swings').sum().alias('swings'),
|
422 |
+
pl.col('in_zone').sum().alias('in_zone'),
|
423 |
+
pl.col('out_zone').sum().alias('out_zone'),
|
424 |
+
pl.col('whiffs').sum().alias('whiffs'),
|
425 |
+
pl.col('zone_swing').sum().alias('zone_swing'),
|
426 |
+
pl.col('zone_contact').sum().alias('zone_contact'),
|
427 |
+
pl.col('ozone_swing').sum().alias('ozone_swing'),
|
428 |
+
pl.col('ozone_contact').sum().alias('ozone_contact'),
|
429 |
+
pl.col('trajectory_ground_ball').sum().alias('ground_ball'),
|
430 |
+
pl.col('trajectory_line_drive').sum().alias('line_drive'),
|
431 |
+
pl.col('trajectory_fly_ball').sum().alias('fly_ball'),
|
432 |
+
pl.col('trajectory_popup').sum().alias('pop_up'),
|
433 |
+
pl.col('attack_zone').count().alias('attack_zone'),
|
434 |
+
pl.col('heart').sum().alias('heart'),
|
435 |
+
pl.col('shadow').sum().alias('shadow'),
|
436 |
+
pl.col('chase').sum().alias('chase'),
|
437 |
+
pl.col('waste').sum().alias('waste'),
|
438 |
+
pl.col('heart_swing').sum().alias('heart_swing'),
|
439 |
+
pl.col('shadow_swing').sum().alias('shadow_swing'),
|
440 |
+
pl.col('chase_swing').sum().alias('chase_swing'),
|
441 |
+
pl.col('waste_swing').sum().alias('waste_swing'),
|
442 |
+
pl.col('heart_whiff').sum().alias('heart_whiff'),
|
443 |
+
pl.col('shadow_whiff').sum().alias('shadow_whiff'),
|
444 |
+
pl.col('chase_whiff').sum().alias('chase_whiff'),
|
445 |
+
pl.col('waste_whiff').sum().alias('waste_whiff'),
|
446 |
+
pl.col('pull').sum().alias('pull'),
|
447 |
+
pl.col('straight').sum().alias('straight'),
|
448 |
+
pl.col('oppo').sum().alias('oppo'),
|
449 |
+
((pl.col('trajectory_fly_ball') == 1) | (pl.col('trajectory_line_drive') == 1)).sum().alias('fly_line_bip'),
|
450 |
+
(pl.col('pull') & ((pl.col('trajectory_fly_ball') == 1) | (pl.col('trajectory_line_drive') == 1))).sum().alias('pull_fly_ball'),
|
451 |
+
pl.col('single').sum().alias('single'),
|
452 |
+
pl.col('double').sum().alias('double'),
|
453 |
+
pl.col('triple').sum().alias('triple'),
|
454 |
+
pl.col('home_run').sum().alias('home_run'),
|
455 |
+
(pl.col('extension').mean()).alias('extension'),
|
456 |
+
(pl.col('start_speed').filter(pl.col('pitch_type').is_in(['FF','SI'])).mean().alias('avg_start_speed_ff')),
|
457 |
+
|
458 |
+
|
459 |
+
|
460 |
+
])
|
461 |
+
|
462 |
+
# Add calculated columns to the summary DataFrame
|
463 |
+
df_summ = df_summ.with_columns([
|
464 |
+
(pl.col('hits') / pl.col('ab')).alias('avg'),
|
465 |
+
(pl.col('on_base') / pl.col('obp_pa')).alias('obp'),
|
466 |
+
(pl.col('tb') / pl.col('ab')).alias('slg'),
|
467 |
+
(pl.col('on_base') / pl.col('obp_pa') + pl.col('tb') / pl.col('ab')).alias('ops'),
|
468 |
+
(pl.col('k') / pl.col('pa')).alias('k_percent'),
|
469 |
+
(pl.col('bb') / pl.col('pa')).alias('bb_percent'),
|
470 |
+
(pl.col('k_minus_bb') / pl.col('pa')).alias('k_minus_bb_percent'),
|
471 |
+
(pl.col('bb_minus_k') / pl.col('pa')).alias('bb_minus_k_percent'),
|
472 |
+
(pl.col('bb') / pl.col('k')).alias('bb_over_k_percent'),
|
473 |
+
(pl.col('csw') / pl.col('pitches')).alias('csw_percent'),
|
474 |
+
(pl.col('sweet_spot') / pl.col('bip_div')).alias('sweet_spot_percent'),
|
475 |
+
(pl.col('woba') / pl.col('woba_codes')).alias('woba_percent'),
|
476 |
+
(pl.col('woba_contact') / pl.col('bip')).alias('woba_percent_contact'),
|
477 |
+
(pl.col('hard_hit') / pl.col('bip_div')).alias('hard_hit_percent'),
|
478 |
+
(pl.col('barrel') / pl.col('bip_div')).alias('barrel_percent'),
|
479 |
+
(pl.col('zone_contact') / pl.col('zone_swing')).alias('zone_contact_percent'),
|
480 |
+
(pl.col('zone_swing') / pl.col('in_zone')).alias('zone_swing_percent'),
|
481 |
+
(pl.col('in_zone') / pl.col('pitches')).alias('zone_percent'),
|
482 |
+
(pl.col('ozone_swing') / (pl.col('out_zone'))).alias('chase_percent'),
|
483 |
+
(pl.col('ozone_contact') / pl.col('ozone_swing')).alias('chase_contact'),
|
484 |
+
(pl.col('swings') / pl.col('pitches')).alias('swing_percent'),
|
485 |
+
(pl.col('whiffs') / pl.col('swings')).alias('whiff_rate'),
|
486 |
+
(pl.col('whiffs') / pl.col('pitches')).alias('swstr_rate'),
|
487 |
+
(pl.col('ground_ball') / pl.col('bip')).alias('ground_ball_percent'),
|
488 |
+
(pl.col('line_drive') / pl.col('bip')).alias('line_drive_percent'),
|
489 |
+
(pl.col('fly_ball') / pl.col('bip')).alias('fly_ball_percent'),
|
490 |
+
(pl.col('pop_up') / pl.col('bip')).alias('pop_up_percent'),
|
491 |
+
(pl.col('heart') / pl.col('attack_zone')).alias('heart_zone_percent'),
|
492 |
+
(pl.col('shadow') / pl.col('attack_zone')).alias('shadow_zone_percent'),
|
493 |
+
(pl.col('chase') / pl.col('attack_zone')).alias('chase_zone_percent'),
|
494 |
+
(pl.col('waste') / pl.col('attack_zone')).alias('waste_zone_percent'),
|
495 |
+
(pl.col('heart_swing') / pl.col('heart')).alias('heart_zone_swing_percent'),
|
496 |
+
(pl.col('shadow_swing') / pl.col('shadow')).alias('shadow_zone_swing_percent'),
|
497 |
+
(pl.col('chase_swing') / pl.col('chase')).alias('chase_zone_swing_percent'),
|
498 |
+
(pl.col('waste_swing') / pl.col('waste')).alias('waste_zone_swing_percent'),
|
499 |
+
(pl.col('heart_whiff') / pl.col('heart_swing')).alias('heart_zone_whiff_percent'),
|
500 |
+
(pl.col('shadow_whiff') / pl.col('shadow_swing')).alias('shadow_zone_whiff_percent'),
|
501 |
+
(pl.col('chase_whiff') / pl.col('chase_swing')).alias('chase_zone_whiff_percent'),
|
502 |
+
(pl.col('waste_whiff') / pl.col('waste_swing')).alias('waste_zone_whiff_percent'),
|
503 |
+
(pl.col('xwoba') / pl.col('xwoba_codes')).alias('xwoba_percent'),
|
504 |
+
(pl.col('xwoba_contact') / pl.col('bip')).alias('xwoba_percent_contact'),
|
505 |
+
(pl.col('pull') / pl.col('bip')).alias('pull_percent'),
|
506 |
+
(pl.col('straight') / pl.col('bip')).alias('straight_percent'),
|
507 |
+
(pl.col('oppo') / pl.col('bip')).alias('oppo_percent'),
|
508 |
+
(pl.col('pull_fly_ball') / pl.col('fly_line_bip')).alias('pulled_fly_ball_percent'),
|
509 |
+
|
510 |
+
])
|
511 |
+
|
512 |
+
return df_summ
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
# Assuming df is your Polars DataFrame
|
520 |
+
def update_summary_select(self, df: pl.DataFrame, selection: list) -> pl.DataFrame:
|
521 |
+
"""
|
522 |
+
Update summary statistics for pitchers or batters.
|
523 |
+
|
524 |
+
Parameters:
|
525 |
+
df (pl.DataFrame): The input Polars DataFrame containing player statistics.
|
526 |
+
pitcher (bool): A flag indicating whether to calculate statistics for pitchers (True) or batters (False).
|
527 |
+
|
528 |
+
Returns:
|
529 |
+
pl.DataFrame: A Polars DataFrame with aggregated and calculated summary statistics.
|
530 |
+
"""
|
531 |
+
|
532 |
+
# Group by position_id and position_name, then aggregate various statistics
|
533 |
+
df_summ = df.group_by(selection).agg([
|
534 |
+
pl.col('pa').sum().alias('pa'),
|
535 |
+
pl.col('ab').sum().alias('ab'),
|
536 |
+
pl.col('obp').sum().alias('obp_pa'),
|
537 |
+
pl.col('hits').sum().alias('hits'),
|
538 |
+
pl.col('on_base').sum().alias('on_base'),
|
539 |
+
pl.col('k').sum().alias('k'),
|
540 |
+
pl.col('bb').sum().alias('bb'),
|
541 |
+
pl.col('k_minus_bb').sum().alias('k_minus_bb'),
|
542 |
+
pl.col('bb_minus_k').sum().alias('bb_minus_k'),
|
543 |
+
pl.col('csw').sum().alias('csw'),
|
544 |
+
pl.col('bip').sum().alias('bip'),
|
545 |
+
pl.col('bip_div').sum().alias('bip_div'),
|
546 |
+
pl.col('tb').sum().alias('tb'),
|
547 |
+
pl.col('woba').sum().alias('woba'),
|
548 |
+
pl.col('woba_contact').sum().alias('woba_contact'),
|
549 |
+
pl.col('woba_pred').sum().alias('xwoba'),
|
550 |
+
pl.col('woba_pred_contact').sum().alias('xwoba_contact'),
|
551 |
+
pl.col('woba_codes').sum().alias('woba_codes'),
|
552 |
+
pl.col('xwoba_codes').sum().alias('xwoba_codes'),
|
553 |
+
pl.col('hard_hit').sum().alias('hard_hit'),
|
554 |
+
pl.col('barrel').sum().alias('barrel'),
|
555 |
+
pl.col('sweet_spot').sum().alias('sweet_spot'),
|
556 |
+
pl.col('launch_speed').max().alias('max_launch_speed'),
|
557 |
+
pl.col('launch_speed').quantile(0.90).alias('launch_speed_90'),
|
558 |
+
pl.col('launch_speed').mean().alias('launch_speed'),
|
559 |
+
pl.col('launch_angle').mean().alias('launch_angle'),
|
560 |
+
pl.col('is_pitch').sum().alias('pitches'),
|
561 |
+
pl.col('swings').sum().alias('swings'),
|
562 |
+
pl.col('in_zone').sum().alias('in_zone'),
|
563 |
+
pl.col('out_zone').sum().alias('out_zone'),
|
564 |
+
pl.col('whiffs').sum().alias('whiffs'),
|
565 |
+
pl.col('zone_swing').sum().alias('zone_swing'),
|
566 |
+
pl.col('zone_contact').sum().alias('zone_contact'),
|
567 |
+
pl.col('ozone_swing').sum().alias('ozone_swing'),
|
568 |
+
pl.col('ozone_contact').sum().alias('ozone_contact'),
|
569 |
+
pl.col('trajectory_ground_ball').sum().alias('ground_ball'),
|
570 |
+
pl.col('trajectory_line_drive').sum().alias('line_drive'),
|
571 |
+
pl.col('trajectory_fly_ball').sum().alias('fly_ball'),
|
572 |
+
pl.col('trajectory_popup').sum().alias('pop_up'),
|
573 |
+
pl.col('attack_zone').count().alias('attack_zone'),
|
574 |
+
pl.col('heart').sum().alias('heart'),
|
575 |
+
pl.col('shadow').sum().alias('shadow'),
|
576 |
+
pl.col('chase').sum().alias('chase'),
|
577 |
+
pl.col('waste').sum().alias('waste'),
|
578 |
+
pl.col('heart_swing').sum().alias('heart_swing'),
|
579 |
+
pl.col('shadow_swing').sum().alias('shadow_swing'),
|
580 |
+
pl.col('chase_swing').sum().alias('chase_swing'),
|
581 |
+
pl.col('waste_swing').sum().alias('waste_swing'),
|
582 |
+
pl.col('heart_whiff').sum().alias('heart_whiff'),
|
583 |
+
pl.col('shadow_whiff').sum().alias('shadow_whiff'),
|
584 |
+
pl.col('chase_whiff').sum().alias('chase_whiff'),
|
585 |
+
pl.col('waste_whiff').sum().alias('waste_whiff'),
|
586 |
+
pl.col('pull').sum().alias('pull'),
|
587 |
+
pl.col('straight').sum().alias('straight'),
|
588 |
+
pl.col('oppo').sum().alias('oppo'),
|
589 |
+
((pl.col('trajectory_fly_ball') == 1) | (pl.col('trajectory_line_drive') == 1)).sum().alias('fly_line_bip'),
|
590 |
+
(pl.col('pull') & ((pl.col('trajectory_fly_ball') == 1) | (pl.col('trajectory_line_drive') == 1))).sum().alias('pull_fly_ball'),
|
591 |
+
pl.col('single').sum().alias('single'),
|
592 |
+
pl.col('double').sum().alias('double'),
|
593 |
+
pl.col('triple').sum().alias('triple'),
|
594 |
+
pl.col('home_run').sum().alias('home_run'),
|
595 |
+
(pl.col('extension').mean()).alias('extension'),
|
596 |
+
(pl.col('start_speed').filter(pl.col('pitch_type').is_in(['FF','SI','FC'])).mean().alias('avg_start_speed_ff')),
|
597 |
+
|
598 |
+
|
599 |
+
])
|
600 |
+
|
601 |
+
# Add calculated columns to the summary DataFrame
|
602 |
+
df_summ = df_summ.with_columns([
|
603 |
+
(pl.col('hits') / pl.col('ab')).alias('avg'),
|
604 |
+
(pl.col('on_base') / pl.col('obp_pa')).alias('obp'),
|
605 |
+
(pl.col('tb') / pl.col('ab')).alias('slg'),
|
606 |
+
(pl.col('on_base') / pl.col('obp_pa') + pl.col('tb') / pl.col('ab')).alias('ops'),
|
607 |
+
(pl.col('k') / pl.col('pa')).alias('k_percent'),
|
608 |
+
(pl.col('bb') / pl.col('pa')).alias('bb_percent'),
|
609 |
+
(pl.col('k_minus_bb') / pl.col('pa')).alias('k_minus_bb_percent'),
|
610 |
+
(pl.col('bb_minus_k') / pl.col('pa')).alias('bb_minus_k_percent'),
|
611 |
+
(pl.col('bb') / pl.col('k')).alias('bb_over_k_percent'),
|
612 |
+
(pl.col('csw') / pl.col('pitches')).alias('csw_percent'),
|
613 |
+
(pl.col('sweet_spot') / pl.col('bip_div')).alias('sweet_spot_percent'),
|
614 |
+
(pl.col('woba') / pl.col('woba_codes')).alias('woba_percent'),
|
615 |
+
(pl.col('woba_contact') / pl.col('bip')).alias('woba_percent_contact'),
|
616 |
+
(pl.col('hard_hit') / pl.col('bip_div')).alias('hard_hit_percent'),
|
617 |
+
(pl.col('barrel') / pl.col('bip_div')).alias('barrel_percent'),
|
618 |
+
(pl.col('zone_contact') / pl.col('zone_swing')).alias('zone_contact_percent'),
|
619 |
+
(pl.col('zone_swing') / pl.col('in_zone')).alias('zone_swing_percent'),
|
620 |
+
(pl.col('in_zone') / pl.col('pitches')).alias('zone_percent'),
|
621 |
+
(pl.col('ozone_swing') / (pl.col('pitches') - pl.col('in_zone'))).alias('chase_percent'),
|
622 |
+
(pl.col('ozone_contact') / pl.col('ozone_swing')).alias('chase_contact'),
|
623 |
+
(pl.col('swings') / pl.col('pitches')).alias('swing_percent'),
|
624 |
+
(pl.col('whiffs') / pl.col('swings')).alias('whiff_rate'),
|
625 |
+
(pl.col('whiffs') / pl.col('pitches')).alias('swstr_rate'),
|
626 |
+
(pl.col('ground_ball') / pl.col('bip')).alias('ground_ball_percent'),
|
627 |
+
(pl.col('line_drive') / pl.col('bip')).alias('line_drive_percent'),
|
628 |
+
(pl.col('fly_ball') / pl.col('bip')).alias('fly_ball_percent'),
|
629 |
+
(pl.col('pop_up') / pl.col('bip')).alias('pop_up_percent'),
|
630 |
+
(pl.col('heart') / pl.col('attack_zone')).alias('heart_zone_percent'),
|
631 |
+
(pl.col('shadow') / pl.col('attack_zone')).alias('shadow_zone_percent'),
|
632 |
+
(pl.col('chase') / pl.col('attack_zone')).alias('chase_zone_percent'),
|
633 |
+
(pl.col('waste') / pl.col('attack_zone')).alias('waste_zone_percent'),
|
634 |
+
(pl.col('heart_swing') / pl.col('heart')).alias('heart_zone_swing_percent'),
|
635 |
+
(pl.col('shadow_swing') / pl.col('shadow')).alias('shadow_zone_swing_percent'),
|
636 |
+
(pl.col('chase_swing') / pl.col('chase')).alias('chase_zone_swing_percent'),
|
637 |
+
(pl.col('waste_swing') / pl.col('waste')).alias('waste_zone_swing_percent'),
|
638 |
+
(pl.col('heart_whiff') / pl.col('heart_swing')).alias('heart_zone_whiff_percent'),
|
639 |
+
(pl.col('shadow_whiff') / pl.col('shadow_swing')).alias('shadow_zone_whiff_percent'),
|
640 |
+
(pl.col('chase_whiff') / pl.col('chase_swing')).alias('chase_zone_whiff_percent'),
|
641 |
+
(pl.col('waste_whiff') / pl.col('waste_swing')).alias('waste_zone_whiff_percent'),
|
642 |
+
(pl.col('xwoba') / pl.col('xwoba_codes')).alias('xwoba_percent'),
|
643 |
+
(pl.col('xwoba_contact') / pl.col('bip')).alias('xwoba_percent_contact'),
|
644 |
+
(pl.col('pull') / pl.col('bip')).alias('pull_percent'),
|
645 |
+
(pl.col('straight') / pl.col('bip')).alias('straight_percent'),
|
646 |
+
(pl.col('oppo') / pl.col('bip')).alias('oppo_percent'),
|
647 |
+
(pl.col('pull_fly_ball') / pl.col('fly_line_bip')).alias('pulled_fly_ball_percent'),
|
648 |
+
])
|
649 |
+
|
650 |
+
return df_summ
|