Spaces:
Running
on
Zero
Running
on
Zero
import concurrent.futures | |
import random | |
import gradio as gr | |
import requests | |
import io, base64, json, os | |
import spaces | |
from PIL import Image | |
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, VIDEO_GENERATION_MODELS, MUSEUM_UNSUPPORTED_MODELS, DESIRED_APPEAR_MODEL, DESIRED_APPEAR_MODEL_CHANCE, load_pipeline | |
from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum, draw_from_videogen_museum, draw2_from_videogen_museum | |
from .pre_download import pre_download_all_models, pre_download_image_models_gen, pre_download_image_models_edit, pre_download_video_models_gen | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import re | |
def debug_packages(): | |
import pkg_resources | |
installed_packages = pkg_resources.working_set | |
for package in installed_packages: | |
print(f"{package.key}=={package.version}") | |
def fetch_unsafe_words(file_path): | |
""" | |
Loads unsafe words from a file and returns them as a list. | |
""" | |
try: | |
with open(file_path, 'r') as file: | |
# Read lines from file and strip any extra whitespace | |
unsafe_words = [line.strip() for line in file.readlines()] | |
# Remove any empty strings that may result from empty lines | |
unsafe_words = [word for word in unsafe_words if word] | |
return unsafe_words | |
except Exception as e: | |
print(f"Error loading file: {e}. Using default unsafe words.") | |
# Default unsafe words list | |
return [ | |
"anal", "anus", "arse", "ass", "ballsack", "bastard", "bdsm", "bitch", "bimbo", | |
"blow job", "blowjob", "blue waffle", "boob", "booobs", "breasts", "booty call", | |
"boner", "bondage", "bullshit", "busty", "butthole", "cawk", "chink", "clit", | |
"cnut", "cock", "cokmuncher", "cowgirl", "crap", "crotch", "cum", "cunt", "damn", | |
"dick", "dildo", "dink", "deepthroat", "deep throat", "dog style", "doggie style", | |
"doggy style", "doosh", "douche", "duche", "ejaculate", "ejaculating", | |
"ejaculation", "ejakulate", "erotic", "erotism", "fag", "fatass", "femdom", | |
"fingering", "footjob", "foot job", "fuck", "fcuk", "fingerfuck", "fistfuck", | |
"fook", "fooker", "fuk", "gangbang", "gang bang", "gaysex", "handjob", | |
"hand job", "hentai", "hooker", "hoer", "homo", "horny", "incest", "jackoff", | |
"jack off", "jerkoff", "jerk off", "jizz", "masturbate", "mofo", "mothafuck", | |
"motherfuck", "milf", "muff", "nigga", "nigger", "nipple", "nob", "numbnuts", | |
"nutsack", "nude", "orgy", "orgasm", "panty", "panties", "penis", "playboy", | |
"porn", "pussy", "pussies", "rape", "raping", "rapist", "rectum", "retard", | |
"rimming", "sadist", "sadism", "scrotum", "sex", "semen", "shemale", "she male", | |
"shit", "slut", "spunk", "strip club", "stripclub", "tit", "threesome", | |
"three some", "throating", "twat", "viagra", "vagina", "wank", "whore", "whoar", | |
"xxx" | |
] | |
def check_prompt_safety(prompt, unsafe_words_file='./profanity_words.txt'): | |
""" | |
Checking prompt safety. Returns boolean (Not Safe = False, Safe = True) | |
""" | |
# Load unsafe words from the provided file or use default if loading fails | |
unsafe_words = fetch_unsafe_words(unsafe_words_file) | |
# Convert input string to lowercase to ensure case-insensitive matching | |
prompt = prompt.lower() | |
# Check if any unsafe word is in the input string | |
for word in unsafe_words: | |
# Use regex to match whole words only | |
if re.search(r'\b' + re.escape(word) + r'\b', prompt): | |
return False | |
return True | |
class ModelManager: | |
def __init__(self, enable_nsfw=False, do_pre_download=False, do_debug_packages=False): | |
self.model_ig_list = IMAGE_GENERATION_MODELS | |
self.model_ie_list = IMAGE_EDITION_MODELS | |
self.model_vg_list = VIDEO_GENERATION_MODELS | |
self.excluding_model_list = MUSEUM_UNSUPPORTED_MODELS | |
self.desired_model_list = DESIRED_APPEAR_MODEL | |
self.enable_nsfw = enable_nsfw | |
self.load_guard(enable_nsfw) | |
self.loaded_models = {} | |
if do_debug_packages: | |
debug_packages() | |
if do_pre_download: | |
pre_download_all_models(include_video=False) | |
try: | |
self.generate_image_ig.zerogpu = True | |
self.generate_image_ie.zerogpu = True | |
self.generate_video_vg.zerogpu = True | |
except: | |
print("Failed to set zerogpu for wrapper_fns") | |
pass | |
def load_model_pipe(self, model_name): | |
if not model_name in self.loaded_models: | |
pipe = load_pipeline(model_name) | |
self.loaded_models[model_name] = pipe | |
else: | |
pipe = self.loaded_models[model_name] | |
return pipe | |
def load_guard(self, enable_nsfw=True): | |
model_id = "meta-llama/Llama-Guard-3-8B" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
token = os.getenv("HF_TOKEN") or os.getenv("HF_GUARD") | |
if enable_nsfw: | |
self.guard_tokenizer = AutoTokenizer.from_pretrained(model_id) | |
self.guard = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device) | |
else: | |
self.guard_tokenizer = None | |
self.guard = None | |
def NSFW_filter_simple(self, prompt): | |
is_safe = check_prompt_safety(prompt) | |
if is_safe: | |
return "safe" | |
else: | |
return "unsafe" | |
def NSFW_filter(self, prompt): | |
chat = [{"role": "user", "content": prompt}] | |
input_ids = self.guard_tokenizer.apply_chat_template(chat, return_tensors="pt").to('cuda') | |
self.guard.cuda() | |
if self.guard: | |
def _generate(): | |
return self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0) | |
output = _generate() | |
output = self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0) | |
prompt_len = input_ids.shape[-1] | |
result = self.guard_tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) | |
return result | |
else: | |
# guard is disabled | |
return "safe" | |
def generate_image_ig(self, prompt, model_name): | |
# if 'unsafe' not in self.NSFW_filter(prompt): | |
print('The prompt is safe') | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
# else: | |
# print(f'The prompt "{prompt}" is not safe') | |
# result = '' | |
return result | |
def generate_image_ig_api(self, prompt, model_name): | |
# if 'unsafe' not in self.NSFW_filter(prompt): | |
print('The prompt is safe') | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
# else: | |
# print(f'The prompt "{prompt}" is not safe') | |
# result = '' | |
return result | |
def generate_image_ig_museum(self, model_name): | |
model_name = model_name.split('_')[1] | |
result_list = draw_from_imagen_museum("t2i", model_name) | |
image_link = result_list[0] | |
prompt = result_list[1] | |
return image_link, prompt | |
def generate_image_ig_parallel_anony(self, prompt, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub") | |
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1], model_names[0], model_names[1] | |
def generate_image_ig_museum_parallel_anony(self, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_imagen_museum("t2i", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
return image_links[0], image_links[1], model_names[0], model_names[1], prompt_list[0] | |
def generate_image_ig_parallel(self, prompt, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub") | |
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1] | |
def generate_image_ig_museum_parallel(self, model_A, model_B): | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_A.split('_')[1] | |
model_2 = model_B.split('_')[1] | |
result_list = draw2_from_imagen_museum("t2i", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
return image_links[0], image_links[1], prompt_list[0] | |
def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name): | |
# if 'unsafe' not in self.NSFW_filter(" ".join([textbox_source, textbox_target, textbox_instruct])): | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct) | |
# else: | |
# result = '' | |
return result | |
def generate_image_ie_museum(self, model_name): | |
model_name = model_name.split('_')[1] | |
result_list = draw_from_imagen_museum("tie", model_name) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
# image_links = [src, model] | |
# prompt_list = [source_caption, target_caption, instruction] | |
return image_links[0], image_links[1], prompt_list[0], prompt_list[1], prompt_list[2] | |
def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [ | |
executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, | |
model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1] | |
def generate_image_ie_museum_parallel(self, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_imagen_museum("tie", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
# image_links = [src, model_A, model_B] | |
# prompt_list = [source_caption, target_caption, instruction] | |
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2] | |
def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1], model_names[0], model_names[1] | |
def generate_image_ie_museum_parallel_anony(self, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_imagen_museum("tie", model_1, model_2) | |
image_links = result_list[0] | |
prompt_list = result_list[1] | |
# image_links = [src, model_A, model_B] | |
# prompt_list = [source_caption, target_caption, instruction] | |
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2], model_names[0], model_names[1] | |
def generate_video_vg(self, prompt, model_name): | |
# if 'unsafe' not in self.NSFW_filter(prompt): | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
# else: | |
# result = '' | |
return result | |
def generate_video_vg_api(self, prompt, model_name): | |
# if 'unsafe' not in self.NSFW_filter(prompt): | |
pipe = self.load_model_pipe(model_name) | |
result = pipe(prompt=prompt) | |
# else: | |
# result = '' | |
return result | |
def generate_video_vg_museum(self, model_name): | |
model_name = model_name.split('_')[1] | |
result_list = draw_from_videogen_museum("t2v", model_name) | |
video_link = result_list[0] | |
prompt = result_list[1] | |
return video_link, prompt | |
def generate_video_vg_parallel_anony(self, prompt, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub") | |
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1], model_names[0], model_names[1] | |
def generate_video_vg_museum_parallel_anony(self, model_A, model_B): | |
# Using list comprehension to get the difference between two lists | |
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list] | |
if model_A == "" and model_B == "": | |
# Filter desired_model_list to only include models that exist in picking_list | |
valid_desired_models = [m for m in self.desired_model_list if m in picking_list] | |
# 50% (or DESIRED_APPEAR_MODEL_CHANCE) chance to include exactly one model from valid desired_model_list | |
if valid_desired_models and random.random() < DESIRED_APPEAR_MODEL_CHANCE: | |
# Pick one model from valid desired list | |
desired_model = random.choice(valid_desired_models) | |
# Pick one model from regular list, excluding desired models | |
regular_model = random.choice([m for m in picking_list if m not in valid_desired_models]) | |
# Randomly determine order | |
model_names = [desired_model, regular_model] if random.random() < 0.5 else [regular_model, desired_model] | |
else: | |
# Pick two models from the regular picking list | |
model_names = random.sample([model for model in picking_list], 2) | |
else: | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_names[0].split('_')[1] | |
model_2 = model_names[1].split('_')[1] | |
result_list = draw2_from_videogen_museum("t2v", model_1, model_2) | |
video_links = result_list[0] | |
prompt_list = result_list[1] | |
return video_links[0], video_links[1], model_names[0], model_names[1], prompt_list[0] | |
def generate_video_vg_parallel(self, prompt, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub") | |
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names] | |
results = [future.result() for future in futures] | |
return results[0], results[1] | |
def generate_video_vg_museum_parallel(self, model_A, model_B): | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
model_1 = model_A.split('_')[1] | |
model_2 = model_B.split('_')[1] | |
result_list = draw2_from_videogen_museum("t2v", model_1, model_2) | |
video_links = result_list[0] | |
prompt_list = result_list[1] | |
return video_links[0], video_links[1], prompt_list[0] |