File size: 15,557 Bytes
80597e4
9c00f5c
 
 
 
 
 
80597e4
9c00f5c
80597e4
9c00f5c
 
80597e4
9c00f5c
 
80597e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c00f5c
 
 
80597e4
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80597e4
 
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80597e4
 
 
9c00f5c
 
80597e4
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80597e4
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80597e4
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80597e4
 
 
 
9c00f5c
 
 
 
 
 
 
80597e4
 
 
 
9c00f5c
 
 
 
 
 
 
 
 
 
80597e4
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80597e4
9c00f5c
 
 
 
 
 
 
80597e4
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
80597e4
 
9c00f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# This code is adapted from https://github.com/THUDM/CogView2/blob/4e55cce981eb94b9c8c1f19ba9f632fd3ee42ba8/cogview2_text2image.py

from __future__ import annotations

import argparse
import functools
import logging
import os
import pathlib
import subprocess
import sys
import time
import zipfile
from typing import Any

if os.getenv('SYSTEM') == 'spaces':
    subprocess.run('pip install icetk==0.0.3'.split())
    subprocess.run('pip install SwissArmyTransformer==0.2.4'.split())
    subprocess.run(
        'pip install git+https://github.com/Sleepychord/Image-Local-Attention@43fee31'
        .split())
    subprocess.run('git clone https://github.com/NVIDIA/apex'.split())
    subprocess.run('git checkout 1403c21'.split(), cwd='apex')
    subprocess.run(
        'pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./'
        .split(),
        cwd='apex')
    subprocess.run('rm -rf apex'.split())
    with open('patch') as f:
        subprocess.run('patch -p1'.split(), cwd='CogView2', stdin=f)

    from huggingface_hub import hf_hub_download

    def download_and_extract_icetk_models() -> None:
        icetk_model_dir = pathlib.Path('/home/user/.icetk_models')
        icetk_model_dir.mkdir()
        path = hf_hub_download('THUDM/icetk',
                               'models.zip',
                               use_auth_token=os.getenv('HF_TOKEN'))
        with zipfile.ZipFile(path) as f:
            f.extractall(path=icetk_model_dir.as_posix())

    def download_and_extract_cogview2_models(name: str) -> None:
        path = hf_hub_download('THUDM/CogView2',
                               name,
                               use_auth_token=os.getenv('HF_TOKEN'))
        with zipfile.ZipFile(path) as f:
            f.extractall()
        os.remove(path)

    download_and_extract_icetk_models()
    names = [
        'coglm.zip',
        'cogview2-dsr.zip',
        #'cogview2-itersr.zip',
    ]
    for name in names:
        download_and_extract_cogview2_models(name)

    os.environ['SAT_HOME'] = '/home/user/app/sharefs/cogview-new'

import gradio as gr
import numpy as np
import torch
from icetk import icetk as tokenizer
from SwissArmyTransformer import get_args
from SwissArmyTransformer.arguments import set_random_seed
from SwissArmyTransformer.generation.autoregressive_sampling import \
    filling_sequence
from SwissArmyTransformer.model import CachedAutoregressiveModel

app_dir = pathlib.Path(__file__).parent
submodule_dir = app_dir / 'CogView2'
sys.path.insert(0, submodule_dir.as_posix())

from coglm_strategy import CoglmStrategy
from sr_pipeline import SRGroup

formatter = logging.Formatter(
    '[%(asctime)s] %(name)s %(levelname)s: %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S')
stream_handler = logging.StreamHandler(stream=sys.stdout)
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.propagate = False
logger.addHandler(stream_handler)

tokenizer.add_special_tokens(
    ['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])


def get_masks_and_position_ids_coglm(
        seq: torch.Tensor, context_length: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    tokens = seq.unsqueeze(0)

    attention_mask = torch.ones((1, len(seq), len(seq)), device=tokens.device)
    attention_mask.tril_()
    attention_mask[..., :context_length] = 1
    attention_mask.unsqueeze_(1)

    position_ids = torch.zeros(len(seq),
                               device=tokens.device,
                               dtype=torch.long)
    torch.arange(0, context_length, out=position_ids[:context_length])
    torch.arange(512,
                 512 + len(seq) - context_length,
                 out=position_ids[context_length:])

    position_ids = position_ids.unsqueeze(0)
    return tokens, attention_mask, position_ids


class InferenceModel(CachedAutoregressiveModel):
    def final_forward(self, logits, **kwargs):
        logits_parallel = logits
        logits_parallel = torch.nn.functional.linear(
            logits_parallel.float(),
            self.transformer.word_embeddings.weight[:20000].float())
        return logits_parallel


def get_recipe(name: str) -> dict[str, Any]:
    r = {
        'attn_plus': 1.4,
        'temp_all_gen': 1.15,
        'topk_gen': 16,
        'temp_cluster_gen': 1.,
        'temp_all_dsr': 1.5,
        'topk_dsr': 100,
        'temp_cluster_dsr': 0.89,
        'temp_all_itersr': 1.3,
        'topk_itersr': 16,
        'query_template': '{}<start_of_image>',
    }
    if name == 'none':
        pass
    elif name == 'mainbody':
        r['query_template'] = '{} 高清摄影 隔绝<start_of_image>'

    elif name == 'photo':
        r['query_template'] = '{} 高清摄影<start_of_image>'

    elif name == 'flat':
        r['query_template'] = '{} 平面风格<start_of_image>'
        # r['attn_plus'] = 1.8
        # r['temp_cluster_gen'] = 0.75
        r['temp_all_gen'] = 1.1
        r['topk_dsr'] = 5
        r['temp_cluster_dsr'] = 0.4

        r['temp_all_itersr'] = 1
        r['topk_itersr'] = 5
    elif name == 'comics':
        r['query_template'] = '{} 漫画 隔绝<start_of_image>'
        r['topk_dsr'] = 5
        r['temp_cluster_dsr'] = 0.4
        r['temp_all_gen'] = 1.1
        r['temp_all_itersr'] = 1
        r['topk_itersr'] = 5
    elif name == 'oil':
        r['query_template'] = '{} 油画风格<start_of_image>'
        pass
    elif name == 'sketch':
        r['query_template'] = '{} 素描风格<start_of_image>'
        r['temp_all_gen'] = 1.1
    elif name == 'isometric':
        r['query_template'] = '{} 等距矢量图<start_of_image>'
        r['temp_all_gen'] = 1.1
    elif name == 'chinese':
        r['query_template'] = '{} 水墨国画<start_of_image>'
        r['temp_all_gen'] = 1.12
    elif name == 'watercolor':
        r['query_template'] = '{} 水彩画风格<start_of_image>'
    return r


def get_default_args() -> argparse.Namespace:
    arg_list = ['--mode', 'inference', '--fp16']
    args = get_args(arg_list)
    known = argparse.Namespace(img_size=160,
                               only_first_stage=False,
                               inverse_prompt=False,
                               style='mainbody')
    args = argparse.Namespace(**vars(args), **vars(known),
                              **get_recipe(known.style))
    return args


class Model:
    def __init__(self,
                 max_inference_batch_size: int,
                 only_first_stage: bool = False):
        self.args = get_default_args()
        self.args.only_first_stage = only_first_stage
        self.args.max_inference_batch_size = max_inference_batch_size

        self.model, self.args = self.load_model()
        self.strategy = self.load_strategy()
        self.srg = self.load_srg()

        self.query_template = self.args.query_template
        self.style = self.args.style
        self.device = torch.device(self.args.device)
        self.fp16 = self.args.fp16
        self.max_batch_size = self.args.max_inference_batch_size
        self.only_first_stage = self.args.only_first_stage

    def load_model(self) -> tuple[InferenceModel, argparse.Namespace]:
        logger.info('--- load_model ---')
        start = time.perf_counter()

        model, args = InferenceModel.from_pretrained(self.args, 'coglm')

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('--- done ---')
        return model, args

    def load_strategy(self) -> CoglmStrategy:
        logger.info('--- load_strategy ---')
        start = time.perf_counter()

        invalid_slices = [slice(tokenizer.num_image_tokens, None)]
        strategy = CoglmStrategy(invalid_slices,
                                 temperature=self.args.temp_all_gen,
                                 top_k=self.args.topk_gen,
                                 top_k_cluster=self.args.temp_cluster_gen)

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('--- done ---')
        return strategy

    def load_srg(self) -> SRGroup:
        logger.info('--- load_srg ---')
        start = time.perf_counter()

        srg = None if self.args.only_first_stage else SRGroup(self.args)

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('--- done ---')
        return srg

    def update_style(self, style: str) -> None:
        if style == self.style:
            return
        logger.info('--- update_style ---')
        start = time.perf_counter()

        self.style = style
        self.args = argparse.Namespace(**(vars(self.args) | get_recipe(style)))
        self.query_template = self.args.query_template
        logger.info(f'{self.query_template=}')

        self.strategy.temperature = self.args.temp_all_gen

        if self.srg is not None:
            self.srg.dsr.strategy.temperature = self.args.temp_all_dsr
            self.srg.dsr.strategy.topk = self.args.topk_dsr
            self.srg.dsr.strategy.temperature2 = self.args.temp_cluster_dsr

            self.srg.itersr.strategy.temperature = self.args.temp_all_itersr
            self.srg.itersr.strategy.topk = self.args.topk_itersr

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('--- done ---')

    def run(self, text: str, style: str, seed: int, only_first_stage: bool,
            num: int) -> list[np.ndarray] | None:
        logger.info('==================== run ====================')
        start = time.perf_counter()

        self.update_style(style)
        set_random_seed(seed)
        seq, txt_len = self.preprocess_text(text)
        if seq is None:
            return None
        self.only_first_stage = only_first_stage
        tokens = self.generate_tokens(seq, txt_len, num)
        res = self.generate_images(seq, txt_len, tokens)

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('==================== done ====================')
        return res

    @torch.inference_mode()
    def preprocess_text(
            self, text: str) -> tuple[torch.Tensor, int] | tuple[None, None]:
        logger.info('--- preprocess_text ---')
        start = time.perf_counter()

        text = self.query_template.format(text)
        logger.info(f'{text=}')
        seq = tokenizer.encode(text)
        logger.info(f'{len(seq)=}')
        if len(seq) > 110:
            logger.info('The input text is too long.')
            return None, None
        txt_len = len(seq) - 1
        seq = torch.tensor(seq + [-1] * 400, device=self.device)

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('--- done ---')
        return seq, txt_len

    @torch.inference_mode()
    def generate_tokens(self,
                        seq: torch.Tensor,
                        txt_len: int,
                        num: int = 8) -> torch.Tensor:
        logger.info('--- generate_tokens ---')
        start = time.perf_counter()

        # calibrate text length
        log_attention_weights = torch.zeros(
            len(seq),
            len(seq),
            device=self.device,
            dtype=torch.half if self.fp16 else torch.float32)
        log_attention_weights[:, :txt_len] = self.args.attn_plus
        get_func = functools.partial(get_masks_and_position_ids_coglm,
                                     context_length=txt_len)

        output_list = []
        remaining = num
        for _ in range((num + self.max_batch_size - 1) // self.max_batch_size):
            self.strategy.start_pos = txt_len + 1
            coarse_samples = filling_sequence(
                self.model,
                seq.clone(),
                batch_size=min(remaining, self.max_batch_size),
                strategy=self.strategy,
                log_attention_weights=log_attention_weights,
                get_masks_and_position_ids=get_func)[0]
            output_list.append(coarse_samples)
            remaining -= self.max_batch_size
        output_tokens = torch.cat(output_list, dim=0)
        logger.info(f'{output_tokens.shape=}')

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('--- done ---')
        return output_tokens

    @staticmethod
    def postprocess(tensor: torch.Tensor) -> np.ndarray:
        return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute(
            1, 2, 0).to(torch.uint8).numpy()

    @torch.inference_mode()
    def generate_images(self, seq: torch.Tensor, txt_len: int,
                        tokens: torch.Tensor) -> list[np.ndarray]:
        logger.info('--- generate_images ---')
        start = time.perf_counter()

        logger.info(f'{self.only_first_stage=}')
        res = []
        if self.only_first_stage:
            for i in range(len(tokens)):
                seq = tokens[i]
                decoded_img = tokenizer.decode(image_ids=seq[-400:])
                decoded_img = torch.nn.functional.interpolate(decoded_img,
                                                              size=(480, 480))
                decoded_img = self.postprocess(decoded_img[0])
                res.append(decoded_img)  # only the last image (target)
        else:  # sr
            iter_tokens = self.srg.sr_base(tokens[:, -400:], seq[:txt_len])
            for seq in iter_tokens:
                decoded_img = tokenizer.decode(image_ids=seq[-3600:])
                decoded_img = torch.nn.functional.interpolate(decoded_img,
                                                              size=(480, 480))
                decoded_img = self.postprocess(decoded_img[0])
                res.append(decoded_img)  # only the last image (target)

        elapsed = time.perf_counter() - start
        logger.info(f'Elapsed: {elapsed}')
        logger.info('--- done ---')
        return res


class AppModel(Model):
    def __init__(self, max_inference_batch_size: int, only_first_stage: bool):
        super().__init__(max_inference_batch_size, only_first_stage)
        self.translator = gr.Interface.load(
            'spaces/chinhon/translation_eng2ch')

    def make_grid(self, images: list[np.ndarray] | None) -> np.ndarray | None:
        if images is None or len(images) == 0:
            return None
        ncols = 1
        while True:
            if ncols**2 >= len(images):
                break
            ncols += 1
        nrows = (len(images) + ncols - 1) // ncols
        h, w = images[0].shape[:2]
        grid = np.zeros((h * nrows, w * ncols, 3), dtype=np.uint8)
        for i in range(nrows):
            for j in range(ncols):
                index = ncols * i + j
                if index >= len(images):
                    break
                grid[h * i:h * (i + 1), w * j:w * (j + 1)] = images[index]
        return grid

    def run_with_translation(
        self, text: str, translate: bool, style: str, seed: int,
        only_first_stage: bool, num: int
    ) -> tuple[str | None, np.ndarray | None, list[np.ndarray] | None]:
        if translate:
            text = translated_text = self.translator(text)
        else:
            translated_text = None
        results = self.run(text, style, seed, only_first_stage, num)
        grid_image = self.make_grid(results)
        return translated_text, grid_image, results