Spaces:
Running
on
L40S
Running
on
L40S
zR
commited on
Commit
·
ed512fd
1
Parent(s):
0922892
test
Browse files- .gitattributes +1 -0
- README.md +5 -2
- app.py +190 -32
- requirements.txt +11 -13
- rife_model.py +1 -5
.gitattributes
CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
models/RealESRGAN_x4.pth filter=lfs diff=lfs merge=lfs -text
|
37 |
models/flownet.pkl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
models/RealESRGAN_x4.pth filter=lfs diff=lfs merge=lfs -text
|
37 |
models/flownet.pkl filter=lfs diff=lfs merge=lfs -text
|
38 |
+
horse.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -5,7 +5,8 @@ colorFrom: yellow
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.42.0
|
8 |
-
suggested_hardware:
|
|
|
9 |
app_port: 7860
|
10 |
app_file: app.py
|
11 |
models:
|
@@ -41,4 +42,6 @@ pip install -r requirements.txt
|
|
41 |
|
42 |
```bash
|
43 |
python gradio_web_demo.py
|
44 |
-
```
|
|
|
|
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.42.0
|
8 |
+
suggested_hardware: a10g-large
|
9 |
+
suggested_storage: large
|
10 |
app_port: 7860
|
11 |
app_file: app.py
|
12 |
models:
|
|
|
42 |
|
43 |
```bash
|
44 |
python gradio_web_demo.py
|
45 |
+
```
|
46 |
+
|
47 |
+
|
app.py
CHANGED
@@ -1,12 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
import os
|
3 |
import random
|
4 |
import threading
|
5 |
import time
|
6 |
|
|
|
|
|
|
|
7 |
import gradio as gr
|
8 |
import torch
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from datetime import datetime, timedelta
|
11 |
|
12 |
from diffusers.image_processor import VaeImageProcessor
|
@@ -23,9 +42,33 @@ snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
|
23 |
|
24 |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to(device)
|
25 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
pipe.transformer.to(memory_format=torch.channels_last)
|
28 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
|
|
|
|
29 |
|
30 |
os.makedirs("./output", exist_ok=True)
|
31 |
os.makedirs("./gradio_tmp", exist_ok=True)
|
@@ -47,6 +90,80 @@ Video descriptions must have the same num of words as examples below. Extra word
|
|
47 |
"""
|
48 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
51 |
if not os.environ.get("OPENAI_API_KEY"):
|
52 |
return prompt
|
@@ -86,7 +203,7 @@ def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|
86 |
"content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
|
87 |
},
|
88 |
],
|
89 |
-
model="glm-4-
|
90 |
temperature=0.01,
|
91 |
top_p=0.7,
|
92 |
stream=False,
|
@@ -98,24 +215,55 @@ def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|
98 |
|
99 |
|
100 |
def infer(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
):
|
107 |
if seed == -1:
|
108 |
-
seed = random.randint(0, 2
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
return (video_pt, seed)
|
121 |
|
@@ -146,6 +294,7 @@ def delete_old_files():
|
|
146 |
|
147 |
|
148 |
threading.Thread(target=delete_old_files, daemon=True).start()
|
|
|
149 |
|
150 |
with gr.Blocks() as demo:
|
151 |
gr.Markdown("""
|
@@ -166,10 +315,15 @@ with gr.Blocks() as demo:
|
|
166 |
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
|
167 |
⚠️ This demo is for academic research and experiential use only.
|
168 |
</div>
|
169 |
-
|
170 |
""")
|
171 |
with gr.Row():
|
172 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
174 |
|
175 |
with gr.Row():
|
@@ -184,7 +338,7 @@ with gr.Blocks() as demo:
|
|
184 |
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
|
185 |
)
|
186 |
with gr.Row():
|
187 |
-
enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 ->
|
188 |
enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
|
189 |
gr.Markdown(
|
190 |
"✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br> The entire process is based on open-source solutions."
|
@@ -263,20 +417,25 @@ with gr.Blocks() as demo:
|
|
263 |
</table>
|
264 |
""")
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
274 |
latents, seed = infer(
|
275 |
prompt,
|
|
|
|
|
|
|
276 |
num_inference_steps=50, # NOT Changed
|
277 |
guidance_scale=7.0, # NOT Changed
|
278 |
seed=seed_value,
|
279 |
-
|
280 |
)
|
281 |
if scale_status:
|
282 |
latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device)
|
@@ -301,18 +460,17 @@ with gr.Blocks() as demo:
|
|
301 |
|
302 |
return video_path, video_update, gif_update, seed_update
|
303 |
|
304 |
-
|
305 |
def enhance_prompt_func(prompt):
|
306 |
return convert_prompt(prompt, retry_times=1)
|
307 |
|
308 |
-
|
309 |
generate_button.click(
|
310 |
generate,
|
311 |
-
inputs=[prompt, seed_param, enable_scale, enable_rife],
|
312 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
313 |
)
|
314 |
|
315 |
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
|
|
316 |
|
317 |
if __name__ == "__main__":
|
318 |
demo.queue(max_size=15)
|
|
|
1 |
+
"""
|
2 |
+
THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo.
|
3 |
+
set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
OpenAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py
|
7 |
+
"""
|
8 |
+
|
9 |
import math
|
10 |
import os
|
11 |
import random
|
12 |
import threading
|
13 |
import time
|
14 |
|
15 |
+
import cv2
|
16 |
+
import tempfile
|
17 |
+
import imageio_ffmpeg
|
18 |
import gradio as gr
|
19 |
import torch
|
20 |
+
from PIL import Image
|
21 |
+
from diffusers import (
|
22 |
+
CogVideoXPipeline,
|
23 |
+
CogVideoXDPMScheduler,
|
24 |
+
CogVideoXVideoToVideoPipeline,
|
25 |
+
CogVideoXImageToVideoPipeline,
|
26 |
+
CogVideoXTransformer3DModel,
|
27 |
+
)
|
28 |
+
from diffusers.utils import load_video, load_image
|
29 |
from datetime import datetime, timedelta
|
30 |
|
31 |
from diffusers.image_processor import VaeImageProcessor
|
|
|
42 |
|
43 |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to(device)
|
44 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
45 |
+
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
46 |
+
"THUDM/CogVideoX-5b",
|
47 |
+
transformer=pipe.transformer,
|
48 |
+
vae=pipe.vae,
|
49 |
+
scheduler=pipe.scheduler,
|
50 |
+
tokenizer=pipe.tokenizer,
|
51 |
+
text_encoder=pipe.text_encoder,
|
52 |
+
torch_dtype=torch.bfloat16,
|
53 |
+
).to(device)
|
54 |
+
|
55 |
+
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
56 |
+
"THUDM/CogVideoX-5b",
|
57 |
+
transformer=CogVideoXTransformer3DModel.from_pretrained(
|
58 |
+
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
59 |
+
),
|
60 |
+
vae=pipe.vae,
|
61 |
+
scheduler=pipe.scheduler,
|
62 |
+
tokenizer=pipe.tokenizer,
|
63 |
+
text_encoder=pipe.text_encoder,
|
64 |
+
torch_dtype=torch.bfloat16,
|
65 |
+
).to(device)
|
66 |
+
|
67 |
|
68 |
pipe.transformer.to(memory_format=torch.channels_last)
|
69 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
70 |
+
pipe_image.transformer.to(memory_format=torch.channels_last)
|
71 |
+
pipe_image.transformer = torch.compile(pipe_image.transformer, mode="max-autotune", fullgraph=True)
|
72 |
|
73 |
os.makedirs("./output", exist_ok=True)
|
74 |
os.makedirs("./gradio_tmp", exist_ok=True)
|
|
|
90 |
"""
|
91 |
|
92 |
|
93 |
+
def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
|
94 |
+
width, height = get_video_dimensions(input_video)
|
95 |
+
|
96 |
+
if width == 720 and height == 480:
|
97 |
+
processed_video = input_video
|
98 |
+
else:
|
99 |
+
processed_video = center_crop_resize(input_video)
|
100 |
+
return processed_video
|
101 |
+
|
102 |
+
|
103 |
+
def get_video_dimensions(input_video_path):
|
104 |
+
reader = imageio_ffmpeg.read_frames(input_video_path)
|
105 |
+
metadata = next(reader)
|
106 |
+
return metadata["size"]
|
107 |
+
|
108 |
+
|
109 |
+
def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
110 |
+
cap = cv2.VideoCapture(input_video_path)
|
111 |
+
|
112 |
+
orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
113 |
+
orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
114 |
+
orig_fps = cap.get(cv2.CAP_PROP_FPS)
|
115 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
116 |
+
|
117 |
+
width_factor = target_width / orig_width
|
118 |
+
height_factor = target_height / orig_height
|
119 |
+
resize_factor = max(width_factor, height_factor)
|
120 |
+
|
121 |
+
inter_width = int(orig_width * resize_factor)
|
122 |
+
inter_height = int(orig_height * resize_factor)
|
123 |
+
|
124 |
+
target_fps = 8
|
125 |
+
ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
|
126 |
+
skip = min(5, ideal_skip) # Cap at 5
|
127 |
+
|
128 |
+
while (total_frames / (skip + 1)) < 49 and skip > 0:
|
129 |
+
skip -= 1
|
130 |
+
|
131 |
+
processed_frames = []
|
132 |
+
frame_count = 0
|
133 |
+
total_read = 0
|
134 |
+
|
135 |
+
while frame_count < 49 and total_read < total_frames:
|
136 |
+
ret, frame = cap.read()
|
137 |
+
if not ret:
|
138 |
+
break
|
139 |
+
|
140 |
+
if total_read % (skip + 1) == 0:
|
141 |
+
resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
|
142 |
+
|
143 |
+
start_x = (inter_width - target_width) // 2
|
144 |
+
start_y = (inter_height - target_height) // 2
|
145 |
+
cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]
|
146 |
+
|
147 |
+
processed_frames.append(cropped)
|
148 |
+
frame_count += 1
|
149 |
+
|
150 |
+
total_read += 1
|
151 |
+
|
152 |
+
cap.release()
|
153 |
+
|
154 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
155 |
+
temp_video_path = temp_file.name
|
156 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
157 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
|
158 |
+
|
159 |
+
for frame in processed_frames:
|
160 |
+
out.write(frame)
|
161 |
+
|
162 |
+
out.release()
|
163 |
+
|
164 |
+
return temp_video_path
|
165 |
+
|
166 |
+
|
167 |
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
168 |
if not os.environ.get("OPENAI_API_KEY"):
|
169 |
return prompt
|
|
|
203 |
"content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
|
204 |
},
|
205 |
],
|
206 |
+
model="glm-4-plus",
|
207 |
temperature=0.01,
|
208 |
top_p=0.7,
|
209 |
stream=False,
|
|
|
215 |
|
216 |
|
217 |
def infer(
|
218 |
+
prompt: str,
|
219 |
+
image_input: str,
|
220 |
+
video_input: str,
|
221 |
+
video_strenght: float,
|
222 |
+
num_inference_steps: int,
|
223 |
+
guidance_scale: float,
|
224 |
+
seed: int = -1,
|
225 |
+
progress=gr.Progress(track_tqdm=True),
|
226 |
):
|
227 |
if seed == -1:
|
228 |
+
seed = random.randint(0, 2**8 - 1)
|
229 |
+
|
230 |
+
if video_input is not None:
|
231 |
+
video = load_video(video_input)[:49] # Limit to 49 frames
|
232 |
+
video_pt = pipe_video(
|
233 |
+
video=video,
|
234 |
+
prompt=prompt,
|
235 |
+
num_inference_steps=num_inference_steps,
|
236 |
+
num_videos_per_prompt=1,
|
237 |
+
strength=video_strenght,
|
238 |
+
use_dynamic_cfg=True,
|
239 |
+
output_type="pt",
|
240 |
+
guidance_scale=guidance_scale,
|
241 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
242 |
+
).frames
|
243 |
+
elif image_input is not None:
|
244 |
+
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
245 |
+
image = load_image(image_input)
|
246 |
+
video_pt = pipe_image(
|
247 |
+
image=image,
|
248 |
+
prompt=prompt,
|
249 |
+
num_inference_steps=num_inference_steps,
|
250 |
+
num_videos_per_prompt=1,
|
251 |
+
use_dynamic_cfg=True,
|
252 |
+
output_type="pt",
|
253 |
+
guidance_scale=guidance_scale,
|
254 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
255 |
+
).frames
|
256 |
+
else:
|
257 |
+
video_pt = pipe(
|
258 |
+
prompt=prompt,
|
259 |
+
num_videos_per_prompt=1,
|
260 |
+
num_inference_steps=num_inference_steps,
|
261 |
+
num_frames=49,
|
262 |
+
use_dynamic_cfg=True,
|
263 |
+
output_type="pt",
|
264 |
+
guidance_scale=guidance_scale,
|
265 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
266 |
+
).frames
|
267 |
|
268 |
return (video_pt, seed)
|
269 |
|
|
|
294 |
|
295 |
|
296 |
threading.Thread(target=delete_old_files, daemon=True).start()
|
297 |
+
examples = [["horse.mp4"], ["kitten.mp4"], ["train_running.mp4"]]
|
298 |
|
299 |
with gr.Blocks() as demo:
|
300 |
gr.Markdown("""
|
|
|
315 |
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
|
316 |
⚠️ This demo is for academic research and experiential use only.
|
317 |
</div>
|
|
|
318 |
""")
|
319 |
with gr.Row():
|
320 |
with gr.Column():
|
321 |
+
with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
|
322 |
+
image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)")
|
323 |
+
with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
|
324 |
+
video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
|
325 |
+
strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
|
326 |
+
examples_component = gr.Examples(examples, inputs=[video_input], cache_examples=False)
|
327 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
328 |
|
329 |
with gr.Row():
|
|
|
338 |
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
|
339 |
)
|
340 |
with gr.Row():
|
341 |
+
enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
|
342 |
enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
|
343 |
gr.Markdown(
|
344 |
"✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br> The entire process is based on open-source solutions."
|
|
|
417 |
</table>
|
418 |
""")
|
419 |
|
420 |
+
def generate(
|
421 |
+
prompt,
|
422 |
+
image_input,
|
423 |
+
video_input,
|
424 |
+
video_strength,
|
425 |
+
seed_value,
|
426 |
+
scale_status,
|
427 |
+
rife_status,
|
428 |
+
progress=gr.Progress(track_tqdm=True)
|
429 |
+
):
|
430 |
latents, seed = infer(
|
431 |
prompt,
|
432 |
+
image_input,
|
433 |
+
video_input,
|
434 |
+
video_strength,
|
435 |
num_inference_steps=50, # NOT Changed
|
436 |
guidance_scale=7.0, # NOT Changed
|
437 |
seed=seed_value,
|
438 |
+
progress=progress,
|
439 |
)
|
440 |
if scale_status:
|
441 |
latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device)
|
|
|
460 |
|
461 |
return video_path, video_update, gif_update, seed_update
|
462 |
|
|
|
463 |
def enhance_prompt_func(prompt):
|
464 |
return convert_prompt(prompt, retry_times=1)
|
465 |
|
|
|
466 |
generate_button.click(
|
467 |
generate,
|
468 |
+
inputs=[prompt, image_input, video_input, strength, seed_param, enable_scale, enable_rife],
|
469 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
470 |
)
|
471 |
|
472 |
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
473 |
+
video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
|
474 |
|
475 |
if __name__ == "__main__":
|
476 |
demo.queue(max_size=15)
|
requirements.txt
CHANGED
@@ -1,21 +1,19 @@
|
|
1 |
-
spaces
|
2 |
-
safetensors>=0.4.
|
3 |
-
spandrel>=0.
|
4 |
tqdm>=4.66.5
|
5 |
-
opencv-python>=4.10.0.84
|
6 |
scikit-video>=1.1.11
|
7 |
-
diffusers
|
8 |
transformers>=4.44.0
|
9 |
-
accelerate>=0.
|
|
|
10 |
sentencepiece>=0.2.0
|
11 |
-
SwissArmyTransformer>=0.4.12
|
12 |
numpy==1.26.0
|
13 |
torch>=2.4.0
|
14 |
torchvision>=0.19.0
|
15 |
-
gradio>=4.
|
16 |
-
|
17 |
-
imageio
|
18 |
-
|
19 |
-
|
20 |
-
moviepy==1.0.3
|
21 |
pillow==9.5.0
|
|
|
1 |
+
spaces>=0.29.3
|
2 |
+
safetensors>=0.4.5
|
3 |
+
spandrel>=0.4.0
|
4 |
tqdm>=4.66.5
|
|
|
5 |
scikit-video>=1.1.11
|
6 |
+
git+https://github.com/huggingface/diffusers.git@main
|
7 |
transformers>=4.44.0
|
8 |
+
accelerate>=0.34.2
|
9 |
+
opencv-python>=4.10.0.84
|
10 |
sentencepiece>=0.2.0
|
|
|
11 |
numpy==1.26.0
|
12 |
torch>=2.4.0
|
13 |
torchvision>=0.19.0
|
14 |
+
gradio>=4.44.0
|
15 |
+
imageio>=2.34.2
|
16 |
+
imageio-ffmpeg>=0.5.1
|
17 |
+
openai>=1.45.0
|
18 |
+
moviepy>=1.0.3
|
|
|
19 |
pillow==9.5.0
|
rife_model.py
CHANGED
@@ -10,7 +10,6 @@ import skvideo.io
|
|
10 |
from rife.RIFE_HDv3 import Model
|
11 |
|
12 |
logger = logging.getLogger(__name__)
|
13 |
-
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
|
@@ -37,8 +36,7 @@ def make_inference(model, I0, I1, upscale_amount, n):
|
|
37 |
|
38 |
@torch.inference_mode()
|
39 |
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
|
40 |
-
|
41 |
-
print(f"samples shape:{samples.shape}")
|
42 |
output = []
|
43 |
# [f, c, h, w]
|
44 |
for b in range(samples.shape[0]):
|
@@ -119,13 +117,11 @@ def rife_inference_with_path(model, video_path):
|
|
119 |
|
120 |
|
121 |
def rife_inference_with_latents(model, latents):
|
122 |
-
pbar = utils.ProgressBar(latents.shape[1], desc="RIFE inference")
|
123 |
rife_results = []
|
124 |
latents = latents.to(device)
|
125 |
for i in range(latents.size(0)):
|
126 |
# [f, c, w, h]
|
127 |
latent = latents[i]
|
128 |
-
|
129 |
frames = ssim_interpolation_rife(model, latent)
|
130 |
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) # (to [f, c, w, h])
|
131 |
rife_results.append(pt_image)
|
|
|
10 |
from rife.RIFE_HDv3 import Model
|
11 |
|
12 |
logger = logging.getLogger(__name__)
|
|
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
|
|
|
36 |
|
37 |
@torch.inference_mode()
|
38 |
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
|
39 |
+
|
|
|
40 |
output = []
|
41 |
# [f, c, h, w]
|
42 |
for b in range(samples.shape[0]):
|
|
|
117 |
|
118 |
|
119 |
def rife_inference_with_latents(model, latents):
|
|
|
120 |
rife_results = []
|
121 |
latents = latents.to(device)
|
122 |
for i in range(latents.size(0)):
|
123 |
# [f, c, w, h]
|
124 |
latent = latents[i]
|
|
|
125 |
frames = ssim_interpolation_rife(model, latent)
|
126 |
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) # (to [f, c, w, h])
|
127 |
rife_results.append(pt_image)
|