File size: 4,435 Bytes
1aceaa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
from diffusers.image_processor import VaeImageProcessor
from torch.nn import functional as F
import cv2
import utils
from rife.pytorch_msssim import ssim_matlab
import numpy as np
import logging
import skvideo.io
from rife.RIFE_HDv3 import Model

logger = logging.getLogger(__name__)

device = "cuda" if torch.cuda.is_available() else "cpu"


def pad_image(img, scale):
    _, _, h, w = img.shape
    tmp = max(32, int(32 / scale))
    ph = ((h - 1) // tmp + 1) * tmp
    pw = ((w - 1) // tmp + 1) * tmp
    padding = (0, 0, pw - w, ph - h)
    return F.pad(img, padding)


def make_inference(model, I0, I1, upscale_amount, n):
    middle = model.inference(I0, I1, upscale_amount)
    if n == 1:
        return [middle]
    first_half = make_inference(model, I0, middle, upscale_amount, n=n // 2)
    second_half = make_inference(model, middle, I1, upscale_amount, n=n // 2)
    if n % 2:
        return [*first_half, middle, *second_half]
    else:
        return [*first_half, *second_half]


@torch.inference_mode()
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
    print(f"samples dtype:{samples.dtype}")
    print(f"samples shape:{samples.shape}")
    output = []
    # [f, c, h, w]
    for b in range(samples.shape[0]):
        frame = samples[b : b + 1]
        _, _, h, w = frame.shape
        I0 = samples[b : b + 1]
        I1 = samples[b + 1 : b + 2] if b + 2 < samples.shape[0] else samples[-1:]
        I1 = pad_image(I1, upscale_amount)
        # [c, h, w]
        I0_small = F.interpolate(I0, (32, 32), mode="bilinear", align_corners=False)
        I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)

        ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])

        if ssim > 0.996:
            I1 = I0
            I1 = pad_image(I1, upscale_amount)
            I1 = make_inference(model, I0, I1, upscale_amount, 1)

            I1_small = F.interpolate(I1[0], (32, 32), mode="bilinear", align_corners=False)
            ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
            frame = I1[0]
            I1 = I1[0]

        tmp_output = []
        if ssim < 0.2:
            for i in range((2**exp) - 1):
                tmp_output.append(I0)

        else:
            tmp_output = make_inference(model, I0, I1, upscale_amount, 2**exp - 1) if exp else []

        frame = pad_image(frame, upscale_amount)
        tmp_output = [frame] + tmp_output
        for i, frame in enumerate(tmp_output):
            output.append(frame.to(output_device))
    return output


def load_rife_model(model_path):
    model = Model()
    model.load_model(model_path, -1)
    model.eval()
    print("Loaded v3.x HD model.")

    return model


# Create a generator that yields each frame, similar to cv2.VideoCapture
def frame_generator(video_capture):
    while True:
        ret, frame = video_capture.read()
        if not ret:
            break
        yield frame
    video_capture.release()


def rife_inference_with_path(model, video_path):
    video_capture = cv2.VideoCapture(video_path)
    tot_frame = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)
    pt_frame_data = []
    pt_frame = skvideo.io.vreader(video_path)
    for frame in pt_frame:
        pt_frame_data.append(
            torch.from_numpy(np.transpose(frame, (2, 0, 1))).to("cpu", non_blocking=True).float() / 255.0
        )

    pt_frame = torch.from_numpy(np.stack(pt_frame_data))
    pt_frame = pt_frame.to(device)
    pbar = utils.ProgressBar(tot_frame, desc="RIFE inference")
    frames = ssim_interpolation_rife(model, pt_frame)
    pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))])
    image_np = VaeImageProcessor.pt_to_numpy(pt_image)  # (to [49, 512, 480, 3])
    image_pil = VaeImageProcessor.numpy_to_pil(image_np)
    video_path = utils.save_video(image_pil, fps=16)
    if pbar:
        pbar.update(1)
    return video_path


def rife_inference_with_latents(model, latents):
    pbar = utils.ProgressBar(latents.shape[1], desc="RIFE inference")
    rife_results = []
    latents = latents.to(device)
    for i in range(latents.size(0)):
        #  [f, c, w, h]
        latent = latents[i]

        frames = ssim_interpolation_rife(model, latent)
        pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))])  # (to [f, c, w, h])
        rife_results.append(pt_image)

    return torch.stack(rife_results)