Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,87 +1,59 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
|
4 |
-
from string import punctuation
|
5 |
-
import re
|
6 |
-
import numpy as np # Ensure NumPy is imported for audio data processing
|
7 |
-
|
8 |
from parler_tts import ParlerTTSForConditionalGeneration
|
9 |
-
from transformers import AutoTokenizer,
|
|
|
10 |
|
11 |
-
# Set device
|
12 |
-
device = "cpu"
|
13 |
|
14 |
-
# Load
|
15 |
-
|
16 |
-
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
17 |
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
|
18 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained("parler-tts/parler-tts-mini-v1")
|
19 |
|
20 |
# Constants
|
21 |
-
SAMPLE_RATE =
|
22 |
SEED = 42
|
23 |
|
24 |
-
# Default
|
25 |
default_text = "This is a demonstration of my ability to convert written words into spoken language, seamlessly and naturally. As a text-to-speech model, my goal is to sound as clear and engaging as a human, making sure every word I say leaves an impression."
|
26 |
default_description = "moderate speed, very clear, monotone, wonderful speech quality"
|
27 |
|
28 |
-
# Number normalizer
|
29 |
-
number_normalizer = EnglishNumberNormalizer()
|
30 |
-
|
31 |
-
# Preprocessing function
|
32 |
-
def preprocess(text):
|
33 |
-
text = number_normalizer(text).strip()
|
34 |
-
text = text.replace("-", " ")
|
35 |
-
if text[-1] not in punctuation:
|
36 |
-
text = f"{text}."
|
37 |
-
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
|
38 |
-
|
39 |
-
def separate_abb(chunk):
|
40 |
-
chunk = chunk.replace(".", "")
|
41 |
-
return " ".join(chunk)
|
42 |
-
|
43 |
-
abbreviations = re.findall(abbreviations_pattern, text)
|
44 |
-
for abv in abbreviations:
|
45 |
-
if abv in text:
|
46 |
-
text = text.replace(abv, separate_abb(abv))
|
47 |
-
return text
|
48 |
-
|
49 |
# TTS generation function
|
50 |
def gen_tts(text, description):
|
51 |
try:
|
52 |
-
#
|
53 |
-
inputs = tokenizer(description.strip(), return_tensors="pt", truncation=True, max_length=128).to(device)
|
54 |
-
prompt = tokenizer(preprocess(text), return_tensors="pt", truncation=True, max_length=128).to(device)
|
55 |
-
|
56 |
set_seed(SEED)
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
generation = model.generate(
|
58 |
-
input_ids=
|
59 |
-
prompt_input_ids=
|
60 |
-
attention_mask=inputs.attention_mask,
|
61 |
-
prompt_attention_mask=prompt.prompt_attention_mask,
|
62 |
do_sample=True,
|
63 |
-
temperature=
|
64 |
)
|
65 |
|
66 |
-
#
|
67 |
-
print(f"Generated audio shape: {generation.shape}")
|
68 |
-
print(f"Generated audio values: {generation.cpu().numpy().squeeze()}")
|
69 |
-
|
70 |
-
# Check if there are any meaningful values in the audio output
|
71 |
audio_arr = generation.cpu().numpy().squeeze()
|
72 |
-
if np.all(audio_arr == 0):
|
73 |
-
raise ValueError("Generated audio is empty or silent.")
|
74 |
|
75 |
-
# Normalize
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
audio_arr = (audio_arr * np.iinfo(np.int16).max).astype(np.int16)
|
80 |
|
81 |
-
return SAMPLE_RATE, audio_arr # Return sample rate and audio array
|
82 |
except Exception as e:
|
83 |
print(f"Error in TTS generation: {str(e)}")
|
84 |
-
|
|
|
85 |
|
86 |
# Gradio interface
|
87 |
with gr.Blocks() as block:
|
@@ -100,9 +72,8 @@ with gr.Blocks() as block:
|
|
100 |
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
|
101 |
|
102 |
inputs = [input_text, description]
|
103 |
-
outputs = audio_out
|
104 |
-
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs
|
105 |
|
106 |
# Launch the interface
|
107 |
-
block.
|
108 |
-
block.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
3 |
from parler_tts import ParlerTTSForConditionalGeneration
|
4 |
+
from transformers import AutoTokenizer, set_seed
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
# Set device
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
+
# Load model and tokenizer
|
11 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained("TArtx/parler-tts-mini-v1-finetuned-12").to(device)
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
|
|
|
13 |
|
14 |
# Constants
|
15 |
+
SAMPLE_RATE = model.config.sampling_rate
|
16 |
SEED = 42
|
17 |
|
18 |
+
# Default inputs
|
19 |
default_text = "This is a demonstration of my ability to convert written words into spoken language, seamlessly and naturally. As a text-to-speech model, my goal is to sound as clear and engaging as a human, making sure every word I say leaves an impression."
|
20 |
default_description = "moderate speed, very clear, monotone, wonderful speech quality"
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# TTS generation function
|
23 |
def gen_tts(text, description):
|
24 |
try:
|
25 |
+
# Set seed for reproducibility
|
|
|
|
|
|
|
26 |
set_seed(SEED)
|
27 |
+
|
28 |
+
# Prepare inputs
|
29 |
+
input_ids = tokenizer(description.strip(), return_tensors="pt").input_ids.to(device)
|
30 |
+
prompt_input_ids = tokenizer(text.strip(), return_tensors="pt").input_ids.to(device)
|
31 |
+
|
32 |
+
# Generate audio
|
33 |
generation = model.generate(
|
34 |
+
input_ids=input_ids,
|
35 |
+
prompt_input_ids=prompt_input_ids,
|
|
|
|
|
36 |
do_sample=True,
|
37 |
+
temperature=0.7
|
38 |
)
|
39 |
|
40 |
+
# Convert to numpy array
|
|
|
|
|
|
|
|
|
41 |
audio_arr = generation.cpu().numpy().squeeze()
|
|
|
|
|
42 |
|
43 |
+
# Normalize audio
|
44 |
+
if np.max(np.abs(audio_arr)) > 0:
|
45 |
+
audio_arr = audio_arr / np.max(np.abs(audio_arr))
|
46 |
+
audio_arr = (audio_arr * np.iinfo(np.int16).max).astype(np.int16)
|
47 |
+
else:
|
48 |
+
# Fallback to white noise if generation fails
|
49 |
+
audio_arr = np.random.randint(-32768, 32767, SAMPLE_RATE * 10, dtype=np.int16)
|
50 |
|
51 |
+
return SAMPLE_RATE, audio_arr
|
|
|
52 |
|
|
|
53 |
except Exception as e:
|
54 |
print(f"Error in TTS generation: {str(e)}")
|
55 |
+
# Return white noise as fallback
|
56 |
+
return SAMPLE_RATE, np.random.randint(-32768, 32767, SAMPLE_RATE * 10, dtype=np.int16)
|
57 |
|
58 |
# Gradio interface
|
59 |
with gr.Blocks() as block:
|
|
|
72 |
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
|
73 |
|
74 |
inputs = [input_text, description]
|
75 |
+
outputs = audio_out
|
76 |
+
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs)
|
77 |
|
78 |
# Launch the interface
|
79 |
+
block.launch(debug=True)
|
|