File size: 7,522 Bytes
835d0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5c094
835d0a5
 
 
cb5c094
835d0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os

import gradio as gr
import pandas as pd
from huggingface_hub import (
    CommitOperationAdd,
    EvalResult,
    ModelCard,
    RepoUrl,
    create_commit,
)
from huggingface_hub.repocard_data import eval_results_to_model_index
from pytablewriter import MarkdownTableWriter

from openllm import get_datas, get_json_format_data

BOT_HF_TOKEN = os.getenv("BOT_HF_TOKEN")


def search(df, value):
    result_df = df[df["Model"] == value]
    return result_df.iloc[0].to_dict() if not result_df.empty else None


def get_details_url(repo):
    author, model = repo.split("/")
    return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details"


def get_query_url(repo):
    return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}"


def get_task_summary(results):
    return {
        "IFEval": {
            "dataset_type": "HuggingFaceH4/ifeval",
            "dataset_name": "IFEval (0-Shot)",
            "metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
            "metric_value": results["IFEval"],
            "dataset_config": None,  # don't know
            "dataset_split": None,  # don't know
            "dataset_revision": None,
            "dataset_args": {"num_few_shot": 0},
            "metric_name": "strict accuracy",
        },
        "BBH": {
            "dataset_type": "BBH",
            "dataset_name": "BBH (3-Shot)",
            "metric_type": "acc_norm",
            "metric_value": results["BBH"],
            "dataset_config": None,  # don't know
            "dataset_split": None,  # don't know
            "dataset_revision": None,
            "dataset_args": {"num_few_shot": 3},
            "metric_name": "normalized accuracy",
        },
        "MATH Lvl 5": {
            "dataset_type": "hendrycks/competition_math",
            "dataset_name": "MATH Lvl 5 (4-Shot)",
            "metric_type": "exact_match",
            "metric_value": results["MATH Lvl 5"],
            "dataset_config": None,  # don't know
            "dataset_split": None,  # don't know
            "dataset_revision": None,
            "dataset_args": {"num_few_shot": 4},
            "metric_name": "exact match",
        },
        "GPQA": {
            "dataset_type": "Idavidrein/gpqa",
            "dataset_name": "GPQA (0-shot)",
            "metric_type": "acc_norm",
            "metric_value": results["GPQA"],
            "dataset_config": None,  # don't know
            "dataset_split": None,  # don't know
            "dataset_revision": None,
            "dataset_args": {"num_few_shot": 0},
            "metric_name": "acc_norm",
        },
        "MuSR": {
            "dataset_type": "TAUR-Lab/MuSR",
            "dataset_name": "MuSR (0-shot)",
            "metric_type": "acc_norm",
            "metric_value": results["MUSR"],
            "dataset_config": None,  # don't know
            "dataset_split": None,  # don't know
            "dataset_args": {"num_few_shot": 0},
            "metric_name": "acc_norm",
        },
        "MMLU-PRO": {
            "dataset_type": "TIGER-Lab/MMLU-Pro",
            "dataset_name": "MMLU-PRO (5-shot)",
            "metric_type": "acc",
            "metric_value": results["MMLU-PRO"],
            "dataset_config": "main",
            "dataset_split": "test",
            "dataset_args": {"num_few_shot": 5},
            "metric_name": "accuracy",
        },
    }


def get_eval_results(df, repo):
    results = search(df, repo)
    task_summary = get_task_summary(results)
    md_writer = MarkdownTableWriter()
    md_writer.headers = ["Metric", "Value"]
    md_writer.value_matrix = [["Avg.", results["Average ⬆️"]]] + [
        [v["dataset_name"], v["metric_value"]] for v in task_summary.values()
    ]

    text = f"""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here]({get_details_url(repo)})

{md_writer.dumps()}
"""
    return text


def get_edited_yaml_readme(df, repo, token: str | None):
    card = ModelCard.load(repo, token=token)
    results = search(df, repo)

    common = {
        "task_type": "text-generation",
        "task_name": "Text Generation",
        "source_name": "Open LLM Leaderboard",
        "source_url": f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}",
    }

    tasks_results = get_task_summary(results)

    if not card.data[
        "eval_results"
    ]:  # No results reported yet, we initialize the metadata
        card.data["model-index"] = eval_results_to_model_index(
            repo.split("/")[1],
            [EvalResult(**task, **common) for task in tasks_results.values()],
        )
    else:  # We add the new evaluations
        for task in tasks_results.values():
            cur_result = EvalResult(**task, **common)
            if any(
                result.is_equal_except_value(cur_result)
                for result in card.data["eval_results"]
            ):
                continue
            card.data["eval_results"].append(cur_result)

    return str(card)


def commit(
    repo,
    pr_number=None,
    message="Adding Evaluation Results",
    oauth_token: gr.OAuthToken | None = None,
):  # specify pr number if you want to edit it, don't if you don't want
    data = get_json_format_data()
    finished_models = get_datas(data)
    df = pd.DataFrame(finished_models)

    desc = """
  This is an automated PR created with https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard

  The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

  Please report any issues here: https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard/discussions
  """

    if not oauth_token:
        raise gr.Warning(
            "You are not logged in. Click on 'Sign in with Huggingface' to log in."
        )
    else:
        token = oauth_token

    if repo.startswith("https://huggingface.co/"):
        try:
            repo = RepoUrl(repo).repo_id
        except Exception:
            raise gr.Error(f"Not a valid repo id: {str(repo)}")

    edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}

    try:
        try:  # check if there is a readme already
            readme_text = get_edited_yaml_readme(
                df, repo, token=token
            ) + get_eval_results(df, repo)
        except Exception as e:
            if "Repo card metadata block was not found." in str(e):  # There is no readme
                readme_text = get_edited_yaml_readme(df, repo, token=token)
            else:
                print(f"Something went wrong: {e}")

        liste = [
            CommitOperationAdd(
                path_in_repo="README.md", path_or_fileobj=readme_text.encode()
            )
        ]
        commit = create_commit(
            repo_id=repo,
            token=token,
            operations=liste,
            commit_message=message,
            commit_description=desc,
            repo_type="model",
            **edited,
        ).pr_url

        return commit

    except Exception as e:
        if "Discussions are disabled for this repo" in str(e):
            return "Discussions disabled"
        elif "Cannot access gated repo" in str(e):
            return "Gated repo"
        elif "Repository Not Found" in str(e):
            return "Repository Not Found"
        else:
            return e