Karthikeyan commited on
Commit
cd2d37b
1 Parent(s): 0f31d35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -18
app.py CHANGED
@@ -177,10 +177,10 @@ class LangChain_Document_QA:
177
 
178
 
179
 
180
- def _text_box(self,customer_emotion,customer_sentiment_score):
181
- #agent_score = ", ".join([f"{key}: {value:.2f}" for key, value in agent_sentiment_score.items()])
182
  customer_score = ", ".join([f"{key}: {value:.2f}" for key, value in customer_sentiment_score.items()])
183
- return f"customer_emotion:{customer_emotion}\nCustomer_sentiment_score:{customer_score}"
184
 
185
  def _on_sentiment_btn_click(self):
186
  client,agent=self._history_of_chat()
@@ -188,28 +188,28 @@ class LangChain_Document_QA:
188
  customer_emotion=sentiment.emotion_analysis(client)
189
  customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)
190
 
191
- # agent_emotion=sentiment.emotion_analysis(agent)
192
- # agent_sentiment_score = sentiment.analyze_sentiment_for_graph(agent)
193
 
194
- scores=self._text_box(customer_emotion,customer_sentiment_score)
195
 
196
  customer_fig=self._display_graph(customer_sentiment_score)
197
- customer_fig.update_layout(title="Sentiment Analysis",width=775)
198
 
199
- # agent_fig=self._display_graph(agent_sentiment_score)
200
- # agent_fig.update_layout(title="Sentiment Analysis",width=775)
201
 
202
- #agent_emotion_score = sentiment.emotion_analysis_for_graph(agent_emotion)
203
 
204
- # agent_emotion_fig=self._display_graph(agent_emotion_score)
205
- # agent_emotion_fig.update_layout(title="Emotion Analysis",width=775)
206
 
207
  customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
208
 
209
  customer_emotion_fig=self._display_graph(customer_emotion_score)
210
- customer_emotion_fig.update_layout(title="Emotion Analysis",width=775)
211
 
212
- return scores,customer_fig,customer_emotion_fig
213
 
214
 
215
  def clear_func(self):
@@ -255,8 +255,7 @@ class LangChain_Document_QA:
255
  lines=4,
256
  placeholder="Sentiment",
257
  ).style(container=False)
258
- with gr.Row():
259
- with gr.Column(scale=0.50, min_width=0):
260
  end_btn=gr.Button(
261
  value="End",
262
  )
@@ -271,7 +270,11 @@ class LangChain_Document_QA:
271
  plot =gr.Plot(label="Patient", size=(500, 600))
272
  with gr.Column(scale=0.50, min_width=0):
273
  plot_3 =gr.Plot(label="Patient_Emotion", size=(500, 600))
274
-
 
 
 
 
275
 
276
 
277
  txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt])
@@ -282,7 +285,7 @@ class LangChain_Document_QA:
282
  emptyBtn.click(self.clear_func,[],[])
283
  emptyBtn.click(lambda: None, None, chatbot, queue=False)
284
 
285
- Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_3])
286
 
287
  demo.title = "AI Mental Healthcare ChatBot"
288
  demo.launch()
 
177
 
178
 
179
 
180
+ def _text_box(self,customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score):
181
+ agent_score = ", ".join([f"{key}: {value:.2f}" for key, value in agent_sentiment_score.items()])
182
  customer_score = ", ".join([f"{key}: {value:.2f}" for key, value in customer_sentiment_score.items()])
183
+ return f"customer_emotion:{customer_emotion}\nagent_emotion:{agent_emotion}\nAgent_Sentiment_score:{agent_score}\nCustomer_sentiment_score:{customer_score}"
184
 
185
  def _on_sentiment_btn_click(self):
186
  client,agent=self._history_of_chat()
 
188
  customer_emotion=sentiment.emotion_analysis(client)
189
  customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)
190
 
191
+ agent_emotion=sentiment.emotion_analysis(agent)
192
+ agent_sentiment_score = sentiment.analyze_sentiment_for_graph(agent)
193
 
194
+ scores=self._text_box(customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score)
195
 
196
  customer_fig=self._display_graph(customer_sentiment_score)
197
+ customer_fig.update_layout(title="Sentiment Analysis",width=770)
198
 
199
+ agent_fig=self._display_graph(agent_sentiment_score)
200
+ agent_fig.update_layout(title="Sentiment Analysis",width=770)
201
 
202
+ agent_emotion_score = sentiment.emotion_analysis_for_graph(agent_emotion)
203
 
204
+ agent_emotion_fig=self._display_graph(agent_emotion_score)
205
+ agent_emotion_fig.update_layout(title="Emotion Analysis",width=770)
206
 
207
  customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
208
 
209
  customer_emotion_fig=self._display_graph(customer_emotion_score)
210
+ customer_emotion_fig.update_layout(title="Emotion Analysis",width=770)
211
 
212
+ return scores,customer_fig,agent_fig,customer_emotion_fig,agent_emotion_fig
213
 
214
 
215
  def clear_func(self):
 
255
  lines=4,
256
  placeholder="Sentiment",
257
  ).style(container=False)
258
+
 
259
  end_btn=gr.Button(
260
  value="End",
261
  )
 
270
  plot =gr.Plot(label="Patient", size=(500, 600))
271
  with gr.Column(scale=0.50, min_width=0):
272
  plot_3 =gr.Plot(label="Patient_Emotion", size=(500, 600))
273
+ with gr.Row():
274
+ with gr.Column(scale=0.50, min_width=0):
275
+ plot_2 =gr.Plot(label="Psychotherapist", size=(500, 600))
276
+ with gr.Column(scale=0.50, min_width=0):
277
+ plot_4 =gr.Plot(label="Psychotherapist_Emotion", size=(500, 600))
278
 
279
 
280
  txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt])
 
285
  emptyBtn.click(self.clear_func,[],[])
286
  emptyBtn.click(lambda: None, None, chatbot, queue=False)
287
 
288
+ Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_2,plot_3,plot_4])
289
 
290
  demo.title = "AI Mental Healthcare ChatBot"
291
  demo.launch()