Karthikeyan commited on
Commit
b55512d
·
1 Parent(s): 3227853

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -7
app.py CHANGED
@@ -15,17 +15,34 @@ import plotly.express as px
15
 
16
  class SentimentAnalyzer:
17
  def __init__(self):
18
- self.model="facebook/bart-large-mnli"
19
  openai.api_key=os.getenv("OPENAI_API_KEY")
20
  def analyze_sentiment(self, text):
21
- pipe = pipeline("zero-shot-classification", model=self.model)
22
- label=["positive","negative","neutral"]
23
- result = pipe(text, label)
24
- sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]}
25
- sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  return sentiment_scores_str
27
  def emotion_analysis(self,text):
28
- prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score of the Mental Healthcare Doctor Chatbot and patient conversation text.\
29
  your are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 1 result having the highest score]
30
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.\
31
  analyze the text : '''{text}'''
 
15
 
16
  class SentimentAnalyzer:
17
  def __init__(self):
18
+ # self.model="facebook/bart-large-mnli"
19
  openai.api_key=os.getenv("OPENAI_API_KEY")
20
  def analyze_sentiment(self, text):
21
+ # pipe = pipeline("zero-shot-classification", model=self.model)
22
+ # label=["positive","negative","neutral"]
23
+ # result = pipe(text, label)
24
+ # sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]}
25
+ # sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
26
+ prompt = f""" Your task is find the top 3 setiments : <positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
27
+ your are analyze the text and provide the output in the following json order: \"\"\"Positive: <sentiment_scores['positive']:.2f>, Neutral: <sentiment_scores['neutral']:.2f>, Negative: <sentiment_scores['negative']:.2f>\"\"\"
28
+ analyze the text : '''{text}'''
29
+ """
30
+ response = openai.Completion.create(
31
+ model="text-davinci-003",
32
+ prompt=prompt,
33
+ temperature=1,
34
+ max_tokens=60,
35
+ top_p=1,
36
+ frequency_penalty=0,
37
+ presence_penalty=0
38
+ )
39
+
40
+ # Extract the generated text
41
+ sentiment_scores_str = response.choices[0].text.strip()
42
+ print(sentiment_scores_str)
43
  return sentiment_scores_str
44
  def emotion_analysis(self,text):
45
+ prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
46
  your are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 1 result having the highest score]
47
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.\
48
  analyze the text : '''{text}'''