Spaces:
Runtime error
Runtime error
Karthikeyan
commited on
Commit
·
681c09e
1
Parent(s):
d359f3d
Update app.py
Browse files
app.py
CHANGED
@@ -18,28 +18,6 @@ class SentimentAnalyzer:
|
|
18 |
def __init__(self):
|
19 |
# self.model="facebook/bart-large-mnli"
|
20 |
openai.api_key=os.getenv("OPENAI_API_KEY")
|
21 |
-
def analyze_sentiment(self, text):
|
22 |
-
prompt = f""" Your task is find the top 3 setiments : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
23 |
-
your are analyze the text and provide the output in the following json order: \"\"\"
|
24 |
-
<\{result['labels'][0]: result['scores'][0], result['labels'][1]: result['scores'][1], result['labels'][2]: result['scores'][2] \}>\"\"\" \
|
25 |
-
analyze the text : '''{text}'''
|
26 |
-
"""
|
27 |
-
response = openai.Completion.create(
|
28 |
-
model="text-davinci-003",
|
29 |
-
prompt=prompt,
|
30 |
-
temperature=1,
|
31 |
-
max_tokens=60,
|
32 |
-
top_p=1,
|
33 |
-
frequency_penalty=0,
|
34 |
-
presence_penalty=0
|
35 |
-
)
|
36 |
-
|
37 |
-
# Extract the generated text
|
38 |
-
sentiment_scores_str = response.choices[0].text.strip()
|
39 |
-
print(sentiment_scores_str)
|
40 |
-
return sentiment_scores_str
|
41 |
-
|
42 |
-
|
43 |
def emotion_analysis(self,text):
|
44 |
prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
45 |
your are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 1 result having the highest score]
|
@@ -81,7 +59,7 @@ class SentimentAnalyzer:
|
|
81 |
list2_text = sentiment_scores[end_index + 2:-1]
|
82 |
sentiment = list(map(str.strip, list1_text.split(",")))
|
83 |
scores = list(map(float, list2_text.split(",")))
|
84 |
-
score_dict={"
|
85 |
print(score_dict)
|
86 |
return score_dict
|
87 |
|
@@ -151,10 +129,11 @@ class LangChain_Document_QA:
|
|
151 |
|
152 |
def _display_graph(self,sentiment_scores):
|
153 |
df = pd.DataFrame(sentiment_scores)
|
154 |
-
fig = px.bar(df, x='Score', y='
|
155 |
fig.update_layout(height=500, width=200)
|
156 |
return fig
|
157 |
def _display_graph_emotion(self,customer_emotion_score):
|
|
|
158 |
fig = px.pie(customer_emotion_score, values='Score', names='Emotion', title='Emotion Distribution', hover_data=['Score'])
|
159 |
#fig.update_traces(texttemplate='Emotion', textposition='outside')
|
160 |
fig.update_layout(height=500, width=200)
|
@@ -214,11 +193,12 @@ class LangChain_Document_QA:
|
|
214 |
|
215 |
|
216 |
def _text_box(self,customer_emotion,customer_sentiment_score):
|
217 |
-
sentiment_data = customer_sentiment_score
|
218 |
-
emotion_data = customer_emotion
|
219 |
-
sentiment_str = ', '.join([f'{label}: {score}' for label, score in zip(sentiment_data['Labels'], sentiment_data['Score'])])
|
220 |
-
emotion_str = ', '.join([f'{emotion}: {score}' for emotion, score in zip(emotion_data['Emotion'], emotion_data['Score'])])
|
221 |
-
return f"Sentiment: {sentiment_str}, Emotion: {emotion_str}"
|
|
|
222 |
|
223 |
def _on_sentiment_btn_click(self):
|
224 |
client=self._history_of_chat()
|
|
|
18 |
def __init__(self):
|
19 |
# self.model="facebook/bart-large-mnli"
|
20 |
openai.api_key=os.getenv("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def emotion_analysis(self,text):
|
22 |
prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
23 |
your are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 1 result having the highest score]
|
|
|
59 |
list2_text = sentiment_scores[end_index + 2:-1]
|
60 |
sentiment = list(map(str.strip, list1_text.split(",")))
|
61 |
scores = list(map(float, list2_text.split(",")))
|
62 |
+
score_dict={"Sentiment": sentiment, "Score": scores}
|
63 |
print(score_dict)
|
64 |
return score_dict
|
65 |
|
|
|
129 |
|
130 |
def _display_graph(self,sentiment_scores):
|
131 |
df = pd.DataFrame(sentiment_scores)
|
132 |
+
fig = px.bar(df, x='Score', y='Sentiment', orientation='h', labels={'Score': 'Score', 'Labels': 'Sentiment'})
|
133 |
fig.update_layout(height=500, width=200)
|
134 |
return fig
|
135 |
def _display_graph_emotion(self,customer_emotion_score):
|
136 |
+
|
137 |
fig = px.pie(customer_emotion_score, values='Score', names='Emotion', title='Emotion Distribution', hover_data=['Score'])
|
138 |
#fig.update_traces(texttemplate='Emotion', textposition='outside')
|
139 |
fig.update_layout(height=500, width=200)
|
|
|
193 |
|
194 |
|
195 |
def _text_box(self,customer_emotion,customer_sentiment_score):
|
196 |
+
# sentiment_data = customer_sentiment_score
|
197 |
+
# emotion_data = customer_emotion
|
198 |
+
# sentiment_str = ', '.join([f'{label}: {score}' for label, score in zip(sentiment_data['Labels'], sentiment_data['Score'])])
|
199 |
+
# emotion_str = ', '.join([f'{emotion}: {score}' for emotion, score in zip(emotion_data['Emotion'], emotion_data['Score'])])
|
200 |
+
# return f"Sentiment: {sentiment_str}, Emotion: {emotion_str}"
|
201 |
+
return f"Sentiment: \n{customer_sentiment_score[0]} \n {customer_sentiment_score[1]} Emotion: \n{customer_emotion[0]}\n{customer_emotion[1]}\n"
|
202 |
|
203 |
def _on_sentiment_btn_click(self):
|
204 |
client=self._history_of_chat()
|