Spaces:
Runtime error
Runtime error
Karthikeyan
commited on
Commit
·
0f5cd4b
1
Parent(s):
5fc65a1
Update app.py
Browse files
app.py
CHANGED
@@ -18,11 +18,6 @@ class SentimentAnalyzer:
|
|
18 |
# self.model="facebook/bart-large-mnli"
|
19 |
openai.api_key=os.getenv("OPENAI_API_KEY")
|
20 |
def analyze_sentiment(self, text):
|
21 |
-
# pipe = pipeline("zero-shot-classification", model=self.model)
|
22 |
-
# label=["positive","negative","neutral"]
|
23 |
-
# result = pipe(text, label)
|
24 |
-
# sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]}
|
25 |
-
# sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
|
26 |
prompt = f""" Your task is find the top 3 setiments : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
27 |
your are analyze the text and provide the output in the following json order: \"\"\"
|
28 |
<\{result['labels'][0]: result['scores'][0], result['labels'][1]: result['scores'][1], result['labels'][2]: result['scores'][2] \}>\"\"\" \
|
@@ -42,6 +37,8 @@ class SentimentAnalyzer:
|
|
42 |
sentiment_scores_str = response.choices[0].text.strip()
|
43 |
print(sentiment_scores_str)
|
44 |
return sentiment_scores_str
|
|
|
|
|
45 |
def emotion_analysis(self,text):
|
46 |
prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
47 |
your are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 1 result having the highest score]
|
@@ -70,8 +67,7 @@ class SentimentAnalyzer:
|
|
70 |
# result['labels'][2]: result['scores'][2]
|
71 |
# }
|
72 |
prompt = f""" Your task is find the top 3 setiments : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
73 |
-
your are analyze the text and provide the output in the following json order: \"\"\"
|
74 |
-
<\{result['labels'][0]: result['scores'][0], result['labels'][1]: result['scores'][1], result['labels'][2]: result['scores'][2] \}>\"\"\" \
|
75 |
analyze the text : '''{text}'''
|
76 |
"""
|
77 |
response = openai.Completion.create(
|
|
|
18 |
# self.model="facebook/bart-large-mnli"
|
19 |
openai.api_key=os.getenv("OPENAI_API_KEY")
|
20 |
def analyze_sentiment(self, text):
|
|
|
|
|
|
|
|
|
|
|
21 |
prompt = f""" Your task is find the top 3 setiments : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
22 |
your are analyze the text and provide the output in the following json order: \"\"\"
|
23 |
<\{result['labels'][0]: result['scores'][0], result['labels'][1]: result['scores'][1], result['labels'][2]: result['scores'][2] \}>\"\"\" \
|
|
|
37 |
sentiment_scores_str = response.choices[0].text.strip()
|
38 |
print(sentiment_scores_str)
|
39 |
return sentiment_scores_str
|
40 |
+
|
41 |
+
|
42 |
def emotion_analysis(self,text):
|
43 |
prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
44 |
your are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 1 result having the highest score]
|
|
|
67 |
# result['labels'][2]: result['scores'][2]
|
68 |
# }
|
69 |
prompt = f""" Your task is find the top 3 setiments : <labels = positive, negative, neutral> and it's sentiment score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
|
70 |
+
your are analyze the text and provide the output in the following json format heigher to lower order: \"\"\"<label1: score1, label2:score2, label3:score3>\"\"\" \
|
|
|
71 |
analyze the text : '''{text}'''
|
72 |
"""
|
73 |
response = openai.Completion.create(
|