Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,73 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
transform = transforms.Compose([
|
11 |
-
transforms.Resize((128, 128)),
|
12 |
-
transforms.ToTensor(),
|
13 |
-
transforms.Normalize([0.5], [0.5])
|
14 |
])
|
15 |
|
16 |
def classify_brain_tumor(image):
|
17 |
-
image = transform(image).unsqueeze(0)
|
18 |
with torch.no_grad():
|
19 |
output = model(image)
|
20 |
-
|
21 |
-
return "Tumor" if
|
22 |
|
23 |
interface = gr.Interface(
|
24 |
fn=classify_brain_tumor,
|
25 |
inputs=gr.inputs.Image(type="pil"),
|
26 |
outputs="text",
|
27 |
title="Brain Tumor Classification",
|
28 |
-
description="Upload an MRI image to classify if it has a tumor or not.
|
29 |
)
|
30 |
|
31 |
-
interface.launch()
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
from torchvision import transforms
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
|
8 |
+
class FireModule(nn.Module):
|
9 |
+
def __init__(self, in_channels, s1x1, e1x1, e3x3):
|
10 |
+
super(FireModule, self).__init__()
|
11 |
+
self.squeeze = nn.Conv2d(in_channels=in_channels, out_channels=s1x1, kernel_size=1, stride=1)
|
12 |
+
self.expand1x1 = nn.Conv2d(in_channels=s1x1, out_channels=e1x1, kernel_size=1)
|
13 |
+
self.expand3x3 = nn.Conv2d(in_channels=s1x1, out_channels=e3x3, kernel_size=3, padding=1)
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
x = F.relu(self.squeeze(x))
|
17 |
+
x1 = self.expand1x1(x)
|
18 |
+
x2 = self.expand3x3(x)
|
19 |
+
x = F.relu(torch.cat((x1, x2), dim=1))
|
20 |
+
return x
|
21 |
+
|
22 |
+
class SqueezeNet(nn.Module):
|
23 |
+
def __init__(self, out_channels):
|
24 |
+
super(SqueezeNet, self).__init__()
|
25 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=96, kernel_size=7, stride=2)
|
26 |
+
self.max_pool1 = nn.MaxPool2d(kernel_size=3, stride=2)
|
27 |
+
self.fire2 = FireModule(in_channels=96, s1x1=16, e1x1=64, e3x3=64)
|
28 |
+
self.fire3 = FireModule(in_channels=128, s1x1=16, e1x1=64, e3x3=64)
|
29 |
+
self.fire4 = FireModule(in_channels=128, s1x1=32, e1x1=128, e3x3=128)
|
30 |
+
self.max_pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
|
31 |
+
self.fire5 = FireModule(in_channels=256, s1x1=32, e1x1=128, e3x3=128)
|
32 |
+
self.fire6 = FireModule(in_channels=256, s1x1=48, e1x1=192, e3x3=192)
|
33 |
+
self.fire7 = FireModule(in_channels=384, s1x1=48, e1x1=192, e3x3=192)
|
34 |
+
self.fire8 = FireModule(in_channels=384, s1x1=64, e1x1=256, e3x3=256)
|
35 |
+
self.max_pool3 = nn.MaxPool2d(kernel_size=3, stride=2)
|
36 |
+
self.fire9 = FireModule(in_channels=512, s1x1=64, e1x1=256, e3x3=256)
|
37 |
+
self.conv10 = nn.Conv2d(in_channels=512, out_channels=out_channels, kernel_size=1, stride=1)
|
38 |
+
self.avgpool = nn.AvgPool2d(kernel_size=12, stride=1)
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
x = self.max_pool1(self.conv1(x))
|
42 |
+
x = self.max_pool2(self.fire4(self.fire3(self.fire2(x))))
|
43 |
+
x = self.max_pool3(self.fire8(self.fire7(self.fire6(self.fire5(x)))))
|
44 |
+
x = self.avgpool(self.conv10(self.fire9(x)))
|
45 |
+
return torch.flatten(x, start_dim=1)
|
46 |
+
|
47 |
+
# Initialize the model and load weights
|
48 |
+
model = SqueezeNet(out_channels=1) # Adjust output channels if needed
|
49 |
+
model.load_state_dict(torch.load("squeezenet.pth", map_location=torch.device('cpu')))
|
50 |
+
model.eval()
|
51 |
|
52 |
transform = transforms.Compose([
|
53 |
+
transforms.Resize((128, 128)), # Resize to match model's input size
|
54 |
+
transforms.ToTensor(), # Convert to tensor
|
55 |
+
transforms.Normalize([0.5], [0.5]) # Normalize based on training dataset
|
56 |
])
|
57 |
|
58 |
def classify_brain_tumor(image):
|
59 |
+
image = transform(image).unsqueeze(0) # Preprocess and add batch dimension
|
60 |
with torch.no_grad():
|
61 |
output = model(image)
|
62 |
+
prediction = torch.sigmoid(output).item() # Apply sigmoid for binary classification
|
63 |
+
return "Tumor" if prediction >= 0.5 else "No Tumor"
|
64 |
|
65 |
interface = gr.Interface(
|
66 |
fn=classify_brain_tumor,
|
67 |
inputs=gr.inputs.Image(type="pil"),
|
68 |
outputs="text",
|
69 |
title="Brain Tumor Classification",
|
70 |
+
description="Upload an MRI image to classify if it has a tumor or not."
|
71 |
)
|
72 |
|
73 |
+
interface.launch()
|