File size: 12,024 Bytes
830bf75 0e88496 d41aa2f 0e88496 d41aa2f 0e88496 d41aa2f 0e88496 d41aa2f 830bf75 d41aa2f 830bf75 d41aa2f 830bf75 f5d93aa 830bf75 d41aa2f 830bf75 f5d93aa 830bf75 f5d93aa 830bf75 d41aa2f f5d93aa 830bf75 d41aa2f 830bf75 f5d93aa 830bf75 f5d93aa 830bf75 d41aa2f 830bf75 d41aa2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import ast
import pandas as pd
import gradio as gr
import litellm
import plotly.express as px
from collections import defaultdict
from datetime import datetime
import os
from datasets import load_dataset
import sqlite3
def initialize_database():
conn = sqlite3.connect('afrimmlu_results.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS summary_results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
language TEXT,
subject TEXT,
accuracy REAL,
timestamp TEXT
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS detailed_results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
language TEXT,
timestamp TEXT,
subject TEXT,
question TEXT,
model_answer TEXT,
correct_answer TEXT,
is_correct INTEGER,
total_tokens INTEGER
)
''')
conn.commit()
conn.close()
def save_results_to_database(language, summary_results, detailed_results):
conn = sqlite3.connect('afrimmlu_results.db')
cursor = conn.cursor()
timestamp = datetime.now().isoformat()
# Save summary results
for subject, accuracy in summary_results.items():
cursor.execute('''
INSERT INTO summary_results (language, subject, accuracy, timestamp)
VALUES (?, ?, ?, ?)
''', (language, subject, accuracy, timestamp))
# Save detailed results
for result in detailed_results:
cursor.execute('''
INSERT INTO detailed_results (
language, timestamp, subject, question, model_answer,
correct_answer, is_correct, total_tokens
) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
''', (
language,
result['timestamp'],
result['subject'],
result['question'],
result['model_answer'],
result['correct_answer'],
int(result['is_correct']),
result['total_tokens']
))
conn.commit()
conn.close()
def load_afrimmlu_data(language_code="swa"):
"""
Load AfriMMLU dataset for a specific language.
"""
try:
dataset = load_dataset(
'masakhane/afrimmlu',
language_code,
token=os.environ['HF_TOKEN'],
)
test_data = dataset['test'].to_list()
return test_data
except Exception as e:
print(f"Error loading dataset: {str(e)}")
return None
def preprocess_dataset(test_data):
"""
Preprocess the dataset to convert the 'choices' field from a string to a list of strings.
"""
preprocessed_data = []
for example in test_data:
if isinstance(example['choices'], str):
choices_str = example['choices']
if choices_str.startswith("'") and choices_str.endswith("'"):
choices_str = choices_str[1:-1]
elif choices_str.startswith('"') and choices_str.endswith('"'):
choices_str = choices_str[1:-1]
choices_str = choices_str.replace("\\'", "'")
try:
example['choices'] = ast.literal_eval(choices_str)
except (ValueError, SyntaxError):
print(f"Error parsing choices: {choices_str}")
continue
preprocessed_data.append(example)
return preprocessed_data
def evaluate_afrimmlu(test_data, model_name="deepseek/deepseek-chat", language="swa"):
"""
Evaluate the model on the AfriMMLU dataset.
"""
results = []
correct = 0
total = 0
subject_results = defaultdict(lambda: {"correct": 0, "total": 0})
for example in test_data:
question = example['question']
choices = example['choices']
answer = example['answer']
subject = example['subject']
prompt = (
f"Answer the following multiple-choice question. "
f"Return only the letter corresponding to the correct answer (A, B, C, or D).\n"
f"Question: {question}\n"
f"Options:\n"
f"A. {choices[0]}\n"
f"B. {choices[1]}\n"
f"C. {choices[2]}\n"
f"D. {choices[3]}\n"
f"Answer:"
)
try:
response = litellm.completion(
model=model_name,
messages=[{"role": "user", "content": prompt}]
)
model_output = response.choices[0].message.content.strip().upper()
model_answer = None
for char in model_output:
if char in ['A', 'B', 'C', 'D']:
model_answer = char
break
is_correct = model_answer == answer.upper()
if is_correct:
correct += 1
subject_results[subject]["correct"] += 1
total += 1
subject_results[subject]["total"] += 1
results.append({
'timestamp': datetime.now().isoformat(),
'subject': subject,
'question': question,
'model_answer': model_answer,
'correct_answer': answer.upper(),
'is_correct': is_correct,
'total_tokens': response.usage.total_tokens
})
except Exception as e:
print(f"Error processing question: {str(e)}")
continue
accuracy = (correct / total * 100) if total > 0 else 0
subject_accuracy = {
subject: (stats["correct"] / stats["total"] * 100) if stats["total"] > 0 else 0
for subject, stats in subject_results.items()
}
# Save results to database
save_results_to_database(language, {**subject_accuracy, 'Overall': accuracy}, results)
return {
"accuracy": accuracy,
"subject_accuracy": subject_accuracy,
"detailed_results": results
}
def create_visualization(results_dict):
"""
Create visualization from evaluation results.
"""
summary_data = [
{'Subject': subject, 'Accuracy (%)': accuracy}
for subject, accuracy in results_dict['subject_accuracy'].items()
]
summary_data.append({'Subject': 'Overall', 'Accuracy (%)': results_dict['accuracy']})
summary_df = pd.DataFrame(summary_data)
fig = px.bar(
summary_df,
x='Subject',
y='Accuracy (%)',
title='AfriMMLU Evaluation Results',
labels={'Subject': 'Subject', 'Accuracy (%)': 'Accuracy (%)'}
)
fig.update_layout(
xaxis_tickangle=-45,
showlegend=False,
height=600
)
return summary_df, fig
def query_database(query):
conn = sqlite3.connect('afrimmlu_results.db')
try:
df = pd.read_sql_query(query, conn)
return df
except Exception as e:
return pd.DataFrame({'Error': [str(e)]})
finally:
conn.close()
def create_gradio_interface():
language_options = {
"swa": "Swahili",
"yor": "Yoruba",
"wol": "Wolof",
"lin": "Lingala",
"ewe": "Ewe",
"ibo": "Igbo"
}
initialize_database()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# AfriMMLU Evaluation Dashboard")
with gr.Tabs():
# Evaluation Tab
with gr.Tab("Model Evaluation"):
with gr.Row():
with gr.Column(scale=1):
language_input = gr.Dropdown(
choices=list(language_options.keys()),
label="Select Language",
value="swa"
)
model_input = gr.Dropdown(
choices=["deepseek/deepseek-chat"],
label="Select Model",
value="deepseek/deepseek-chat"
)
evaluate_btn = gr.Button("Evaluate", variant="primary")
with gr.Row():
summary_table = gr.Dataframe(
headers=["Subject", "Accuracy (%)"],
label="Summary Results"
)
with gr.Row():
summary_plot = gr.Plot(label="Performance by Subject")
with gr.Row():
detailed_results = gr.Dataframe(
label="Detailed Results",
wrap=True
)
# Query Tab
with gr.Tab("Database Analysis"):
with gr.Row():
with gr.Column():
example_queries = gr.Dropdown(
choices=[
"SELECT language, AVG(accuracy) as avg_accuracy FROM summary_results WHERE subject='Overall' GROUP BY language",
"SELECT subject, AVG(accuracy) as avg_accuracy FROM summary_results GROUP BY subject",
"SELECT language, subject, accuracy, timestamp FROM summary_results ORDER BY timestamp DESC LIMIT 10",
"SELECT language, COUNT(*) as total_questions, SUM(is_correct) as correct_answers FROM detailed_results GROUP BY language",
"SELECT subject, COUNT(*) as total_evaluations FROM summary_results GROUP BY subject"
],
label="Example Queries",
value="SELECT language, AVG(accuracy) as avg_accuracy FROM summary_results WHERE subject='Overall' GROUP BY language"
)
query_input = gr.Textbox(
label="SQL Query",
placeholder="Enter your SQL query here",
lines=3
)
query_button = gr.Button("Run Query", variant="primary")
gr.Markdown("""
### Available Tables:
1. summary_results (id, language, subject, accuracy, timestamp)
2. detailed_results (id, language, timestamp, subject, question, model_answer, correct_answer, is_correct, total_tokens)
""")
with gr.Row():
query_output = gr.Dataframe(
label="Query Results",
wrap=True
)
def evaluate_language(language_code, model_name):
test_data = load_afrimmlu_data(language_code)
if test_data is None:
return None, None, None
preprocessed_data = preprocess_dataset(test_data)
results = evaluate_afrimmlu(preprocessed_data, model_name, language_code)
summary_df, plot = create_visualization(results)
detailed_df = pd.DataFrame(results["detailed_results"])
return summary_df, plot, detailed_df
# Evaluation tab callback
evaluate_btn.click(
fn=evaluate_language,
inputs=[language_input, model_input],
outputs=[summary_table, summary_plot, detailed_results]
)
# Query tab callbacks
example_queries.change(
fn=lambda x: x,
inputs=[example_queries],
outputs=[query_input]
)
query_button.click(
fn=query_database,
inputs=[query_input],
outputs=[query_output]
)
return demo
if __name__ == "__main__":
os.environ['DEEPSEEK_API_KEY']
os.environ['HF_TOKEN']
demo = create_gradio_interface()
demo.launch(share=True) |