|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class FlowHead(nn.Module): |
|
def __init__(self, input_dim=128, hidden_dim=256, |
|
out_dim=2, |
|
): |
|
super(FlowHead, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) |
|
self.conv2 = nn.Conv2d(hidden_dim, out_dim, 3, padding=1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
out = self.conv2(self.relu(self.conv1(x))) |
|
|
|
return out |
|
|
|
|
|
class SepConvGRU(nn.Module): |
|
def __init__(self, hidden_dim=128, input_dim=192 + 128, |
|
kernel_size=5, |
|
): |
|
padding = (kernel_size - 1) // 2 |
|
|
|
super(SepConvGRU, self).__init__() |
|
self.convz1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, kernel_size), padding=(0, padding)) |
|
self.convr1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, kernel_size), padding=(0, padding)) |
|
self.convq1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, kernel_size), padding=(0, padding)) |
|
|
|
self.convz2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (kernel_size, 1), padding=(padding, 0)) |
|
self.convr2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (kernel_size, 1), padding=(padding, 0)) |
|
self.convq2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (kernel_size, 1), padding=(padding, 0)) |
|
|
|
def forward(self, h, x): |
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz1(hx)) |
|
r = torch.sigmoid(self.convr1(hx)) |
|
q = torch.tanh(self.convq1(torch.cat([r * h, x], dim=1))) |
|
h = (1 - z) * h + z * q |
|
|
|
|
|
hx = torch.cat([h, x], dim=1) |
|
z = torch.sigmoid(self.convz2(hx)) |
|
r = torch.sigmoid(self.convr2(hx)) |
|
q = torch.tanh(self.convq2(torch.cat([r * h, x], dim=1))) |
|
h = (1 - z) * h + z * q |
|
|
|
return h |
|
|
|
|
|
class BasicMotionEncoder(nn.Module): |
|
def __init__(self, corr_channels=324, |
|
flow_channels=2, |
|
): |
|
super(BasicMotionEncoder, self).__init__() |
|
|
|
self.convc1 = nn.Conv2d(corr_channels, 256, 1, padding=0) |
|
self.convc2 = nn.Conv2d(256, 192, 3, padding=1) |
|
self.convf1 = nn.Conv2d(flow_channels, 128, 7, padding=3) |
|
self.convf2 = nn.Conv2d(128, 64, 3, padding=1) |
|
self.conv = nn.Conv2d(64 + 192, 128 - flow_channels, 3, padding=1) |
|
|
|
def forward(self, flow, corr): |
|
cor = F.relu(self.convc1(corr)) |
|
cor = F.relu(self.convc2(cor)) |
|
flo = F.relu(self.convf1(flow)) |
|
flo = F.relu(self.convf2(flo)) |
|
|
|
cor_flo = torch.cat([cor, flo], dim=1) |
|
out = F.relu(self.conv(cor_flo)) |
|
return torch.cat([out, flow], dim=1) |
|
|
|
|
|
class BasicUpdateBlock(nn.Module): |
|
def __init__(self, corr_channels=324, |
|
hidden_dim=128, |
|
context_dim=128, |
|
downsample_factor=8, |
|
flow_dim=2, |
|
bilinear_up=False, |
|
): |
|
super(BasicUpdateBlock, self).__init__() |
|
|
|
self.encoder = BasicMotionEncoder(corr_channels=corr_channels, |
|
flow_channels=flow_dim, |
|
) |
|
|
|
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=context_dim + hidden_dim) |
|
|
|
self.flow_head = FlowHead(hidden_dim, hidden_dim=256, |
|
out_dim=flow_dim, |
|
) |
|
|
|
if bilinear_up: |
|
self.mask = None |
|
else: |
|
self.mask = nn.Sequential( |
|
nn.Conv2d(hidden_dim, 256, 3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, downsample_factor ** 2 * 9, 1, padding=0)) |
|
|
|
def forward(self, net, inp, corr, flow): |
|
motion_features = self.encoder(flow, corr) |
|
|
|
inp = torch.cat([inp, motion_features], dim=1) |
|
|
|
net = self.gru(net, inp) |
|
delta_flow = self.flow_head(net) |
|
|
|
if self.mask is not None: |
|
mask = self.mask(net) |
|
else: |
|
mask = None |
|
|
|
return net, mask, delta_flow |
|
|