File size: 6,806 Bytes
8d015d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import torch
import torch.nn.functional as F
def coords_grid(b, h, w, homogeneous=False, device=None):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W]
stacks = [x, y]
if homogeneous:
ones = torch.ones_like(x) # [H, W]
stacks.append(ones)
grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W]
grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W]
if device is not None:
grid = grid.to(device)
return grid
def generate_window_grid(h_min, h_max, w_min, w_max, len_h, len_w, device=None):
assert device is not None
x, y = torch.meshgrid([torch.linspace(w_min, w_max, len_w, device=device),
torch.linspace(h_min, h_max, len_h, device=device)],
)
grid = torch.stack((x, y), -1).transpose(0, 1).float() # [H, W, 2]
return grid
def normalize_coords(coords, h, w):
# coords: [B, H, W, 2]
c = torch.Tensor([(w - 1) / 2., (h - 1) / 2.]).float().to(coords.device)
return (coords - c) / c # [-1, 1]
def bilinear_sample(img, sample_coords, mode='bilinear', padding_mode='zeros', return_mask=False):
# img: [B, C, H, W]
# sample_coords: [B, 2, H, W] in image scale
if sample_coords.size(1) != 2: # [B, H, W, 2]
sample_coords = sample_coords.permute(0, 3, 1, 2)
b, _, h, w = sample_coords.shape
# Normalize to [-1, 1]
x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1
y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1
grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2]
img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True)
if return_mask:
mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) # [B, H, W]
return img, mask
return img
def flow_warp(feature, flow, mask=False, padding_mode='zeros'):
b, c, h, w = feature.size()
assert flow.size(1) == 2
grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W]
return bilinear_sample(feature, grid, padding_mode=padding_mode,
return_mask=mask)
def forward_backward_consistency_check(fwd_flow, bwd_flow,
alpha=0.01,
beta=0.5
):
# fwd_flow, bwd_flow: [B, 2, H, W]
# alpha and beta values are following UnFlow (https://arxiv.org/abs/1711.07837)
assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W]
warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W]
warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W]
diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W]
diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1)
threshold = alpha * flow_mag + beta
fwd_occ = (diff_fwd > threshold).float() # [B, H, W]
bwd_occ = (diff_bwd > threshold).float()
return fwd_occ, bwd_occ
def back_project(depth, intrinsics):
# Back project 2D pixel coords to 3D points
# depth: [B, H, W]
# intrinsics: [B, 3, 3]
b, h, w = depth.shape
grid = coords_grid(b, h, w, homogeneous=True, device=depth.device) # [B, 3, H, W]
intrinsics_inv = torch.inverse(intrinsics) # [B, 3, 3]
points = intrinsics_inv.bmm(grid.view(b, 3, -1)).view(b, 3, h, w) * depth.unsqueeze(1) # [B, 3, H, W]
return points
def camera_transform(points_ref, extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None):
# Transform 3D points from reference camera to target camera
# points_ref: [B, 3, H, W]
# extrinsics_ref: [B, 4, 4]
# extrinsics_tgt: [B, 4, 4]
# extrinsics_rel: [B, 4, 4], relative pose transform
b, _, h, w = points_ref.shape
if extrinsics_rel is None:
extrinsics_rel = torch.bmm(extrinsics_tgt, torch.inverse(extrinsics_ref)) # [B, 4, 4]
points_tgt = torch.bmm(extrinsics_rel[:, :3, :3],
points_ref.view(b, 3, -1)) + extrinsics_rel[:, :3, -1:] # [B, 3, H*W]
points_tgt = points_tgt.view(b, 3, h, w) # [B, 3, H, W]
return points_tgt
def reproject(points_tgt, intrinsics, return_mask=False):
# reproject to target view
# points_tgt: [B, 3, H, W]
# intrinsics: [B, 3, 3]
b, _, h, w = points_tgt.shape
proj_points = torch.bmm(intrinsics, points_tgt.view(b, 3, -1)).view(b, 3, h, w) # [B, 3, H, W]
X = proj_points[:, 0]
Y = proj_points[:, 1]
Z = proj_points[:, 2].clamp(min=1e-3)
pixel_coords = torch.stack([X / Z, Y / Z], dim=1).view(b, 2, h, w) # [B, 2, H, W] in image scale
if return_mask:
# valid mask in pixel space
mask = (pixel_coords[:, 0] >= 0) & (pixel_coords[:, 0] <= (w - 1)) & (
pixel_coords[:, 1] >= 0) & (pixel_coords[:, 1] <= (h - 1)) # [B, H, W]
return pixel_coords, mask
return pixel_coords
def reproject_coords(depth_ref, intrinsics, extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None,
return_mask=False):
# Compute reprojection sample coords
points_ref = back_project(depth_ref, intrinsics) # [B, 3, H, W]
points_tgt = camera_transform(points_ref, extrinsics_ref, extrinsics_tgt, extrinsics_rel=extrinsics_rel)
if return_mask:
reproj_coords, mask = reproject(points_tgt, intrinsics,
return_mask=return_mask) # [B, 2, H, W] in image scale
return reproj_coords, mask
reproj_coords = reproject(points_tgt, intrinsics,
return_mask=return_mask) # [B, 2, H, W] in image scale
return reproj_coords
def compute_flow_with_depth_pose(depth_ref, intrinsics,
extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None,
return_mask=False):
b, h, w = depth_ref.shape
coords_init = coords_grid(b, h, w, device=depth_ref.device) # [B, 2, H, W]
if return_mask:
reproj_coords, mask = reproject_coords(depth_ref, intrinsics, extrinsics_ref, extrinsics_tgt,
extrinsics_rel=extrinsics_rel,
return_mask=return_mask) # [B, 2, H, W]
rigid_flow = reproj_coords - coords_init
return rigid_flow, mask
reproj_coords = reproject_coords(depth_ref, intrinsics, extrinsics_ref, extrinsics_tgt,
extrinsics_rel=extrinsics_rel,
return_mask=return_mask) # [B, 2, H, W]
rigid_flow = reproj_coords - coords_init
return rigid_flow
|