File size: 6,806 Bytes
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn.functional as F


def coords_grid(b, h, w, homogeneous=False, device=None):
    y, x = torch.meshgrid(torch.arange(h), torch.arange(w))  # [H, W]

    stacks = [x, y]

    if homogeneous:
        ones = torch.ones_like(x)  # [H, W]
        stacks.append(ones)

    grid = torch.stack(stacks, dim=0).float()  # [2, H, W] or [3, H, W]

    grid = grid[None].repeat(b, 1, 1, 1)  # [B, 2, H, W] or [B, 3, H, W]

    if device is not None:
        grid = grid.to(device)

    return grid


def generate_window_grid(h_min, h_max, w_min, w_max, len_h, len_w, device=None):
    assert device is not None

    x, y = torch.meshgrid([torch.linspace(w_min, w_max, len_w, device=device),
                           torch.linspace(h_min, h_max, len_h, device=device)],
                          )
    grid = torch.stack((x, y), -1).transpose(0, 1).float()  # [H, W, 2]

    return grid


def normalize_coords(coords, h, w):
    # coords: [B, H, W, 2]
    c = torch.Tensor([(w - 1) / 2., (h - 1) / 2.]).float().to(coords.device)
    return (coords - c) / c  # [-1, 1]


def bilinear_sample(img, sample_coords, mode='bilinear', padding_mode='zeros', return_mask=False):
    # img: [B, C, H, W]
    # sample_coords: [B, 2, H, W] in image scale
    if sample_coords.size(1) != 2:  # [B, H, W, 2]
        sample_coords = sample_coords.permute(0, 3, 1, 2)

    b, _, h, w = sample_coords.shape

    # Normalize to [-1, 1]
    x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1
    y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1

    grid = torch.stack([x_grid, y_grid], dim=-1)  # [B, H, W, 2]

    img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True)

    if return_mask:
        mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1)  # [B, H, W]

        return img, mask

    return img


def flow_warp(feature, flow, mask=False, padding_mode='zeros'):
    b, c, h, w = feature.size()
    assert flow.size(1) == 2

    grid = coords_grid(b, h, w).to(flow.device) + flow  # [B, 2, H, W]

    return bilinear_sample(feature, grid, padding_mode=padding_mode,
                           return_mask=mask)


def forward_backward_consistency_check(fwd_flow, bwd_flow,
                                       alpha=0.01,
                                       beta=0.5
                                       ):
    # fwd_flow, bwd_flow: [B, 2, H, W]
    # alpha and beta values are following UnFlow (https://arxiv.org/abs/1711.07837)
    assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
    assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
    flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1)  # [B, H, W]

    warped_bwd_flow = flow_warp(bwd_flow, fwd_flow)  # [B, 2, H, W]
    warped_fwd_flow = flow_warp(fwd_flow, bwd_flow)  # [B, 2, H, W]

    diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1)  # [B, H, W]
    diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1)

    threshold = alpha * flow_mag + beta

    fwd_occ = (diff_fwd > threshold).float()  # [B, H, W]
    bwd_occ = (diff_bwd > threshold).float()

    return fwd_occ, bwd_occ


def back_project(depth, intrinsics):
    # Back project 2D pixel coords to 3D points
    # depth: [B, H, W]
    # intrinsics: [B, 3, 3]
    b, h, w = depth.shape
    grid = coords_grid(b, h, w, homogeneous=True, device=depth.device)  # [B, 3, H, W]

    intrinsics_inv = torch.inverse(intrinsics)  # [B, 3, 3]

    points = intrinsics_inv.bmm(grid.view(b, 3, -1)).view(b, 3, h, w) * depth.unsqueeze(1)  # [B, 3, H, W]

    return points


def camera_transform(points_ref, extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None):
    # Transform 3D points from reference camera to target camera
    # points_ref: [B, 3, H, W]
    # extrinsics_ref: [B, 4, 4]
    # extrinsics_tgt: [B, 4, 4]
    # extrinsics_rel: [B, 4, 4], relative pose transform
    b, _, h, w = points_ref.shape

    if extrinsics_rel is None:
        extrinsics_rel = torch.bmm(extrinsics_tgt, torch.inverse(extrinsics_ref))  # [B, 4, 4]

    points_tgt = torch.bmm(extrinsics_rel[:, :3, :3],
                           points_ref.view(b, 3, -1)) + extrinsics_rel[:, :3, -1:]  # [B, 3, H*W]

    points_tgt = points_tgt.view(b, 3, h, w)  # [B, 3, H, W]

    return points_tgt


def reproject(points_tgt, intrinsics, return_mask=False):
    # reproject to target view
    # points_tgt: [B, 3, H, W]
    # intrinsics: [B, 3, 3]

    b, _, h, w = points_tgt.shape

    proj_points = torch.bmm(intrinsics, points_tgt.view(b, 3, -1)).view(b, 3, h, w)  # [B, 3, H, W]

    X = proj_points[:, 0]
    Y = proj_points[:, 1]
    Z = proj_points[:, 2].clamp(min=1e-3)

    pixel_coords = torch.stack([X / Z, Y / Z], dim=1).view(b, 2, h, w)  # [B, 2, H, W] in image scale

    if return_mask:
        # valid mask in pixel space
        mask = (pixel_coords[:, 0] >= 0) & (pixel_coords[:, 0] <= (w - 1)) & (
                pixel_coords[:, 1] >= 0) & (pixel_coords[:, 1] <= (h - 1))  # [B, H, W]

        return pixel_coords, mask

    return pixel_coords


def reproject_coords(depth_ref, intrinsics, extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None,
                     return_mask=False):
    # Compute reprojection sample coords
    points_ref = back_project(depth_ref, intrinsics)  # [B, 3, H, W]
    points_tgt = camera_transform(points_ref, extrinsics_ref, extrinsics_tgt, extrinsics_rel=extrinsics_rel)

    if return_mask:
        reproj_coords, mask = reproject(points_tgt, intrinsics,
                                        return_mask=return_mask)  # [B, 2, H, W] in image scale

        return reproj_coords, mask

    reproj_coords = reproject(points_tgt, intrinsics,
                              return_mask=return_mask)  # [B, 2, H, W] in image scale

    return reproj_coords


def compute_flow_with_depth_pose(depth_ref, intrinsics,
                                 extrinsics_ref=None, extrinsics_tgt=None, extrinsics_rel=None,
                                 return_mask=False):
    b, h, w = depth_ref.shape
    coords_init = coords_grid(b, h, w, device=depth_ref.device)  # [B, 2, H, W]

    if return_mask:
        reproj_coords, mask = reproject_coords(depth_ref, intrinsics, extrinsics_ref, extrinsics_tgt,
                                               extrinsics_rel=extrinsics_rel,
                                               return_mask=return_mask)  # [B, 2, H, W]
        rigid_flow = reproj_coords - coords_init

        return rigid_flow, mask

    reproj_coords = reproject_coords(depth_ref, intrinsics, extrinsics_ref, extrinsics_tgt,
                                     extrinsics_rel=extrinsics_rel,
                                     return_mask=return_mask)  # [B, 2, H, W]

    rigid_flow = reproj_coords - coords_init

    return rigid_flow