File size: 8,699 Bytes
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import torch.nn.functional as F

from .utils import split_feature, merge_splits, split_feature_1d, merge_splits_1d


def single_head_full_attention(q, k, v):
    # q, k, v: [B, L, C]
    assert q.dim() == k.dim() == v.dim() == 3

    scores = torch.matmul(q, k.permute(0, 2, 1)) / (q.size(2) ** .5)  # [B, L, L]
    attn = torch.softmax(scores, dim=2)  # [B, L, L]
    out = torch.matmul(attn, v)  # [B, L, C]

    return out


def single_head_full_attention_1d(q, k, v,
                                  h=None,
                                  w=None,
                                  ):
    # q, k, v: [B, L, C]

    assert h is not None and w is not None
    assert q.size(1) == h * w

    b, _, c = q.size()

    q = q.view(b, h, w, c)  # [B, H, W, C]
    k = k.view(b, h, w, c)
    v = v.view(b, h, w, c)

    scale_factor = c ** 0.5

    scores = torch.matmul(q, k.permute(0, 1, 3, 2)) / scale_factor  # [B, H, W, W]

    attn = torch.softmax(scores, dim=-1)

    out = torch.matmul(attn, v).view(b, -1, c)  # [B, H*W, C]

    return out


def single_head_split_window_attention(q, k, v,
                                       num_splits=1,
                                       with_shift=False,
                                       h=None,
                                       w=None,
                                       attn_mask=None,
                                       ):
    # ref: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
    # q, k, v: [B, L, C]
    assert q.dim() == k.dim() == v.dim() == 3

    assert h is not None and w is not None
    assert q.size(1) == h * w

    b, _, c = q.size()

    b_new = b * num_splits * num_splits

    window_size_h = h // num_splits
    window_size_w = w // num_splits

    q = q.view(b, h, w, c)  # [B, H, W, C]
    k = k.view(b, h, w, c)
    v = v.view(b, h, w, c)

    scale_factor = c ** 0.5

    if with_shift:
        assert attn_mask is not None  # compute once
        shift_size_h = window_size_h // 2
        shift_size_w = window_size_w // 2

        q = torch.roll(q, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
        k = torch.roll(k, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))
        v = torch.roll(v, shifts=(-shift_size_h, -shift_size_w), dims=(1, 2))

    q = split_feature(q, num_splits=num_splits, channel_last=True)  # [B*K*K, H/K, W/K, C]
    k = split_feature(k, num_splits=num_splits, channel_last=True)
    v = split_feature(v, num_splits=num_splits, channel_last=True)

    scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1)
                          ) / scale_factor  # [B*K*K, H/K*W/K, H/K*W/K]

    if with_shift:
        scores += attn_mask.repeat(b, 1, 1)

    attn = torch.softmax(scores, dim=-1)

    out = torch.matmul(attn, v.view(b_new, -1, c))  # [B*K*K, H/K*W/K, C]

    out = merge_splits(out.view(b_new, h // num_splits, w // num_splits, c),
                       num_splits=num_splits, channel_last=True)  # [B, H, W, C]

    # shift back
    if with_shift:
        out = torch.roll(out, shifts=(shift_size_h, shift_size_w), dims=(1, 2))

    out = out.view(b, -1, c)

    return out


def single_head_split_window_attention_1d(q, k, v,
                                          relative_position_bias=None,
                                          num_splits=1,
                                          with_shift=False,
                                          h=None,
                                          w=None,
                                          attn_mask=None,
                                          ):
    # q, k, v: [B, L, C]

    assert h is not None and w is not None
    assert q.size(1) == h * w

    b, _, c = q.size()

    b_new = b * num_splits * h

    window_size_w = w // num_splits

    q = q.view(b * h, w, c)  # [B*H, W, C]
    k = k.view(b * h, w, c)
    v = v.view(b * h, w, c)

    scale_factor = c ** 0.5

    if with_shift:
        assert attn_mask is not None  # compute once
        shift_size_w = window_size_w // 2

        q = torch.roll(q, shifts=-shift_size_w, dims=1)
        k = torch.roll(k, shifts=-shift_size_w, dims=1)
        v = torch.roll(v, shifts=-shift_size_w, dims=1)

    q = split_feature_1d(q, num_splits=num_splits)  # [B*H*K, W/K, C]
    k = split_feature_1d(k, num_splits=num_splits)
    v = split_feature_1d(v, num_splits=num_splits)

    scores = torch.matmul(q.view(b_new, -1, c), k.view(b_new, -1, c).permute(0, 2, 1)
                          ) / scale_factor  # [B*H*K, W/K, W/K]

    if with_shift:
        # attn_mask: [K, W/K, W/K]
        scores += attn_mask.repeat(b * h, 1, 1)  # [B*H*K, W/K, W/K]

    attn = torch.softmax(scores, dim=-1)

    out = torch.matmul(attn, v.view(b_new, -1, c))  # [B*H*K, W/K, C]

    out = merge_splits_1d(out, h, num_splits=num_splits)  # [B, H, W, C]

    # shift back
    if with_shift:
        out = torch.roll(out, shifts=shift_size_w, dims=2)

    out = out.view(b, -1, c)

    return out


class SelfAttnPropagation(nn.Module):
    """
    flow propagation with self-attention on feature
    query: feature0, key: feature0, value: flow
    """

    def __init__(self, in_channels,
                 **kwargs,
                 ):
        super(SelfAttnPropagation, self).__init__()

        self.q_proj = nn.Linear(in_channels, in_channels)
        self.k_proj = nn.Linear(in_channels, in_channels)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, feature0, flow,
                local_window_attn=False,
                local_window_radius=1,
                **kwargs,
                ):
        # q, k: feature [B, C, H, W], v: flow [B, 2, H, W]
        if local_window_attn:
            return self.forward_local_window_attn(feature0, flow,
                                                  local_window_radius=local_window_radius)

        b, c, h, w = feature0.size()

        query = feature0.view(b, c, h * w).permute(0, 2, 1)  # [B, H*W, C]

        # a note: the ``correct'' implementation should be:
        # ``query = self.q_proj(query), key = self.k_proj(query)''
        # this problem is observed while cleaning up the code
        # however, this doesn't affect the performance since the projection is a linear operation,
        # thus the two projection matrices for key can be merged
        # so I just leave it as is in order to not re-train all models :)
        query = self.q_proj(query)  # [B, H*W, C]
        key = self.k_proj(query)  # [B, H*W, C]

        value = flow.view(b, flow.size(1), h * w).permute(0, 2, 1)  # [B, H*W, 2]

        scores = torch.matmul(query, key.permute(0, 2, 1)) / (c ** 0.5)  # [B, H*W, H*W]
        prob = torch.softmax(scores, dim=-1)

        out = torch.matmul(prob, value)  # [B, H*W, 2]
        out = out.view(b, h, w, value.size(-1)).permute(0, 3, 1, 2)  # [B, 2, H, W]

        return out

    def forward_local_window_attn(self, feature0, flow,
                                  local_window_radius=1,
                                  ):
        assert flow.size(1) == 2 or flow.size(1) == 1  # flow or disparity or depth
        assert local_window_radius > 0

        b, c, h, w = feature0.size()

        value_channel = flow.size(1)

        feature0_reshape = self.q_proj(feature0.view(b, c, -1).permute(0, 2, 1)
                                       ).reshape(b * h * w, 1, c)  # [B*H*W, 1, C]

        kernel_size = 2 * local_window_radius + 1

        feature0_proj = self.k_proj(feature0.view(b, c, -1).permute(0, 2, 1)).permute(0, 2, 1).reshape(b, c, h, w)

        feature0_window = F.unfold(feature0_proj, kernel_size=kernel_size,
                                   padding=local_window_radius)  # [B, C*(2R+1)^2), H*W]

        feature0_window = feature0_window.view(b, c, kernel_size ** 2, h, w).permute(
            0, 3, 4, 1, 2).reshape(b * h * w, c, kernel_size ** 2)  # [B*H*W, C, (2R+1)^2]

        flow_window = F.unfold(flow, kernel_size=kernel_size,
                               padding=local_window_radius)  # [B, 2*(2R+1)^2), H*W]

        flow_window = flow_window.view(b, value_channel, kernel_size ** 2, h, w).permute(
            0, 3, 4, 2, 1).reshape(b * h * w, kernel_size ** 2, value_channel)  # [B*H*W, (2R+1)^2, 2]

        scores = torch.matmul(feature0_reshape, feature0_window) / (c ** 0.5)  # [B*H*W, 1, (2R+1)^2]

        prob = torch.softmax(scores, dim=-1)

        out = torch.matmul(prob, flow_window).view(b, h, w, value_channel
                                                   ).permute(0, 3, 1, 2).contiguous()  # [B, 2, H, W]

        return out