bhuvan / app.py
Zeel's picture
fix kml multi-polygon issue
62dd0f3
raw
history blame
8.49 kB
import re
import json
import streamlit as st
import pandas as pd
import geopandas as gpd
import leafmap.foliumap as leafmap
from optree import tree_map
from shapely.ops import transform
import kml2geojson
from io import BytesIO, StringIO
import requests
def shape_3d_to_2d(shape):
if shape.has_z:
return transform(lambda x, y, z: (x, y), shape)
else:
return shape
def preprocess_gdf(gdf):
gdf = gdf.to_crs(epsg=7761) # epsg for Gujarat
gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
gdf["geometry"] = gdf.buffer(0) # Fixes some invalid geometries
return gdf
def is_valid_polygon(geometry_gdf):
geometry = geometry_gdf.geometry.item()
return (geometry.type == "Polygon") and (not geometry.is_empty)
# wide streamlit display
st.set_page_config(layout="wide")
# Function
# Logo
cols = st.columns([1, 11, 1])
with cols[0]:
st.image("Final_IITGN-Logo-symmetric-Color.png")
with cols[-1]:
st.image("IFS.jpg")
# Title
# make title in center
with cols[1]:
st.markdown(
f"""
<h1 style="text-align: center;">KML Viewer</h1>
""",
unsafe_allow_html=True,
)
file_url = st.query_params.get("file_url", None)
if not file_url:
st.warning(
"Please provide a KML or GeoJSON URL as a query parameter, e.g., `?file_url=<your_file_url>` or upload a file."
)
file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml", "shp"])
if not file_url:
st.stop()
if ("file_url" in st.session_state) and ("input_gdf" in st.session_state) and (st.session_state.file_url == file_url):
# st.toast("Using cached data")
input_gdf = st.session_state.input_gdf
else:
st.session_state.file_url = file_url
print(file_url, type(file_url))
if isinstance(file_url, str):
if file_url.startswith("https://drive.google.com/file/d/"):
ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
file_url = f"https://drive.google.com/uc?id={ID}"
elif file_url.startswith("https://drive.google.com/open?id="):
ID = file_url.replace("https://drive.google.com/open?id=", "")
file_url = f"https://drive.google.com/uc?id={ID}"
response = requests.get(file_url)
bytes_data = BytesIO(response.content)
string_data = response.text
else:
bytes_data = BytesIO(file_url.getvalue())
string_data = file_url.getvalue().decode("utf-8")
if string_data.startswith("<?xml"):
geojson = kml2geojson.convert(bytes_data)
features = geojson[0]["features"]
epsg = 4326
input_gdf = gpd.GeoDataFrame.from_features(features, crs=f"EPSG:{epsg}")
else:
input_gdf = gpd.read_file(bytes_data)
input_gdf = preprocess_gdf(input_gdf)
if len(input_gdf) > 1:
st.warning(f"Only the first polygon in the KML will be processed; all other geometries will be ignored.")
for i in range(len(input_gdf)):
geometry_gdf = input_gdf[input_gdf.index == i]
if is_valid_polygon(geometry_gdf):
break
else:
st.error(f"No polygon found inside KML. Please check the KML file.")
st.stop()
st.session_state.input_gdf = input_gdf
# st.toast("Data loaded and cached")
def format_fn(x):
return input_gdf.drop(columns=["geometry"]).loc[x].to_dict()
with st.expander("Advanced Controls", expanded=False):
# input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
map_type = st.radio(
"",
["Esri Satellite Map", "Google Hybrid Map (displays place names)", "Google Satellite Map"],
horizontal=True,
)
height = st.number_input("Map height (px)", 1, 10000, 600, 1)
geometry_gdf = input_gdf[input_gdf.index == 0]
def check_valid_geometry(geometry_gdf):
geometry = geometry_gdf.geometry.item()
if geometry.type != "Polygon":
st.error(f"Selected geometry is of type '{geometry.type}'. Please provide a 'Polygon' geometry.")
st.stop()
check_valid_geometry(geometry_gdf)
m = leafmap.Map()
st.markdown(
"""
<style>
.stRadio [role=radiogroup]{
align-items: center;
justify-content: center;
}
</style>
""",
unsafe_allow_html=True,
)
if map_type == "Google Hybrid Map (displays place names)":
st.write(
"<h4><div style='text-align: center;'>Google Hybrid (displays place names)</div></h4>",
unsafe_allow_html=True,
)
m.add_basemap("HYBRID")
elif map_type == "Google Satellite Map":
st.write("<h4><div style='text-align: center;'>Google Satellite</div></h4>", unsafe_allow_html=True)
m.add_basemap("SATELLITE")
elif map_type == "Esri Satellite Map":
st.write("<h4><div style='text-align: center;'>Esri - 2024/10/10</div></h4>", unsafe_allow_html=True)
m.add_wms_layer(
"https://wayback.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/WMTS/1.0.0/GoogleMapsCompatible/MapServer/tile/56450/{z}/{y}/{x}",
layers="0",
)
else:
st.error("Invalid map type")
st.stop()
m.add_gdf(
geometry_gdf.to_crs(epsg=4326),
layer_name="Geometry",
zoom_to_layer=True,
style_function=lambda x: {"color": "red", "fillOpacity": 0.0},
)
m.to_streamlit(height=height)
# Metrics
stats_df = pd.DataFrame()
stats_df["Points"] = json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"]
stats_df["Centroid"] = geometry_gdf.centroid.to_crs(4326).item()
stats_df["Area (ha)"] = geometry_gdf.geometry.area.item() / 10000
stats_df["Perimeter (m)"] = geometry_gdf.geometry.length.item()
st.write("<h3><div style='text-align: center;'>Geometry Metrics</div></h3>", unsafe_allow_html=True)
# st.markdown(
# f"""| Metric | Value |
# | --- | --- |
# | Area (ha) | {stats_df['Area (ha)'].item():.2f} ha|
# | Perimeter (m) | {stats_df['Perimeter (m)'].item():.2f} m |"""
# unsafe_allow_html=True)
centroid_lon = stats_df["Centroid"].item().xy[0][0]
centroid_lat = stats_df["Centroid"].item().xy[1][0]
centroid_url = f"http://maps.google.com/maps?q={centroid_lat},{centroid_lon}&layer=satellite"
st.markdown(
f"""
<div style="display: flex; justify-content: center;">
<table>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
<td>Centroid</td>
<td>
({centroid_lon:.5f}, {centroid_lat:.5f})
<a href="{centroid_url}" target="_blank">
<button>View on Google Maps</button>
</a>
</td>
</tr>
<td>Area (ha)</td>
<td>{stats_df['Area (ha)'].item():.2f} ha</td>
</tr>
<tr>
<td>Perimeter (m)</td>
<td>{stats_df['Perimeter (m)'].item():.2f} m</td>
</tr>
</table>
</div>
""",
unsafe_allow_html=True,
)
print(stats_df["Points"].item())
print(type(stats_df["Points"].item()))
csv = stats_df.T.to_csv(index=True)
st.download_button("Download Geometry Metrics", csv, f"{file_url}_metrics.csv", "text/csv", use_container_width=True)
if isinstance(file_url, str):
st.markdown(
f"""
<div style="display: flex; justify-content: center;">
<a href="https://huggingface.co/spaces/SustainabilityLabIITGN/NDVI_PERG?file_url={file_url}" target="_blank">
<button style="
background-color: #006400; /* Green background */
color: white; /* White text */
padding: 10px 20px;
font-size: 16px;
border: none;
border-radius: 5px;
cursor: pointer;
">
Click for NDVI Timeseries
</button>
</a>
</div>
""",
unsafe_allow_html=True,
)
# else:
# st.markdown(
# f"""
# <div style="display: flex; justify-content: center;">
# <button style="
# background-color: #FF0000; /* Green background */
# color: white; /* White text */
# padding: 10px 20px;
# font-size: 16px;
# border: none;
# border-radius: 5px;
# cursor: pointer;
# ">
# Click for NDVI Timeseries (This button will be enabled when you provide a file via `?file_url=`)
# </button>
# </a>
# </div>
# """,
# unsafe_allow_html=True,
# )