Zeel commited on
Commit
e534da2
2 Parent(s): bb7c6c8 b782672

Merge branch 'main' of https://huggingface.co/spaces/IITGN-GFD/NDVI_PERG into main

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -91,6 +91,8 @@ def shape_3d_to_2d(shape):
91
 
92
  def preprocess_gdf(gdf):
93
  gdf = gdf.to_crs(epsg=7761) # epsg for Gujarat
 
 
94
  gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
95
  return gdf
96
 
@@ -231,8 +233,8 @@ dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d")
231
  nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
232
  dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
233
  input_daterange = st.date_input("Date Range (Ignore year. App will compute indices for all possible years)", (nov_15, dec_15), jan_1, dec_31)
234
- min_year = int(st.number_input("Minimum Year", value=2010, min_value=2010, step=1))
235
- max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2010, step=1))
236
 
237
  # Input: GeoJSON/KML file
238
  file_url = st.query_params.get("file_url", None)
@@ -251,13 +253,14 @@ def format_fn(x):
251
  input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
252
  geometry_gdf = input_gdf[input_gdf.index == input_geometry_idx]
253
  buffer_geometry_gdf = geometry_gdf.copy()
254
- buffer_geometry_gdf["geometry"] = buffer_geometry_gdf["geometry"].buffer(buffer)
255
  check_valid_geometry(geometry_gdf)
256
 
257
  # Derived Inputs
258
  ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
259
  ee_feature_collection = ee.FeatureCollection(ee_geometry)
260
  buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
 
261
  buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)
262
 
263
  # visualize the geometry
@@ -365,7 +368,7 @@ if "result" in st.session_state:
365
  with cols[1]:
366
  year_2 = st.selectbox("Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x))
367
 
368
- vis_params = {'min': 0, 'max': 1, 'palette': ['white', 'green']} # Example visualization for Sentinel-2
369
 
370
  # Create a colormap and name it as NDVI
371
  colormap = cm.LinearColormap(
 
91
 
92
  def preprocess_gdf(gdf):
93
  gdf = gdf.to_crs(epsg=7761) # epsg for Gujarat
94
+
95
+
96
  gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
97
  return gdf
98
 
 
233
  nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
234
  dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
235
  input_daterange = st.date_input("Date Range (Ignore year. App will compute indices for all possible years)", (nov_15, dec_15), jan_1, dec_31)
236
+ min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1))
237
+ max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1))
238
 
239
  # Input: GeoJSON/KML file
240
  file_url = st.query_params.get("file_url", None)
 
253
  input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
254
  geometry_gdf = input_gdf[input_gdf.index == input_geometry_idx]
255
  buffer_geometry_gdf = geometry_gdf.copy()
256
+ buffer_geometry_gdf["geometry"] = buffer_geometry_gdf["geometry"].buffer(buffer).difference(geometry_gdf.geometry.unary_union)
257
  check_valid_geometry(geometry_gdf)
258
 
259
  # Derived Inputs
260
  ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
261
  ee_feature_collection = ee.FeatureCollection(ee_geometry)
262
  buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
263
+ buffer_ee_geometry = buffer_ee_geometry.difference(ee_geometry)
264
  buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)
265
 
266
  # visualize the geometry
 
368
  with cols[1]:
369
  year_2 = st.selectbox("Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x))
370
 
371
+ vis_params = {'min': 0, 'max': 1, 'palette': ['white', 'green']} # Example visualisation for Sentinel-2
372
 
373
  # Create a colormap and name it as NDVI
374
  colormap = cm.LinearColormap(