File size: 9,512 Bytes
f3f89d3 42d40bd f3f89d3 81256b8 f3f89d3 b206b8c f3f89d3 81256b8 f3f89d3 ebfd724 16a9a7b f3f89d3 81256b8 f3f89d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import ee
import json
import geemap
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
from pandas import to_datetime, read_csv, merge, date_range, DateOffset
from geopandas import read_file
from shapely.ops import transform
from functools import reduce
import plotly.express as px
st.set_page_config(layout="wide")
############################################
# One time setup
############################################
def initialize_ee():
credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
if os.path.exists(credentials_path):
pass # Earth Engine credentials already exist
elif "EE" in os.environ: # write the credentials to the file
ee_credentials = os.environ.get("EE")
os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
with open(credentials_path, "w") as f:
f.write(ee_credentials)
else:
raise ValueError(
f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
)
ee.Initialize()
if "ee_initialized" not in st.session_state:
initialize_ee()
st.session_state.ee_initialized = True
if "wayback_mapping" not in st.session_state:
with open("wayback_imagery.json") as f:
st.session_state.wayback_mapping = json.load(f)
############################################
# Functions
############################################
def shape_3d_to_2d(shape):
if shape.has_z:
return transform(lambda x, y, z: (x, y), shape)
else:
return shape
def preprocess_gdf(gdf):
gdf = gdf.to_crs(epsg=4326)
gdf = gdf[['Name', 'geometry']]
gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
return gdf
def calculate_ndvi(image, nir_band, red_band):
nir = image.select(nir_band)
red = image.select(red_band)
ndvi = (nir.subtract(red)).divide(nir.add(red)).rename("NDVI")
return image.addBands(ndvi)
def postprocess_df(df, name):
df = df.T
df = df.reset_index()
ndvi_df = df[df["index"].str.contains("NDVI")]
ndvi_df["index"] = to_datetime(ndvi_df["index"], format="%Y-%m_NDVI")
ndvi_df = ndvi_df.rename(columns={"index": "Date", 0: name})
cloud_mask_probability = df[df["index"].str.contains("MSK_CLDPRB")]
cloud_mask_probability["index"] = to_datetime(cloud_mask_probability["index"], format="%Y-%m_MSK_CLDPRB")
cloud_mask_probability = cloud_mask_probability.rename(columns={"index": "Date", 0: f"{name}_cloud_proba"})
# normalize
cloud_mask_probability[f"{name}_cloud_proba"] = cloud_mask_probability[f"{name}_cloud_proba"] / 100
df = merge(ndvi_df, cloud_mask_probability, on="Date", how="outer")
return df
def write_info(info):
st.write(f"<span style='color:#00FF00;'>{info}</span>", unsafe_allow_html=True)
############################################
# App
############################################
# Title
# make title in center
st.markdown(
f"""
<h1 style="text-align: center;">Mean NDVI Calculator</h1>
""",
unsafe_allow_html=True,
)
# Input: Date and Cloud Cover
col = st.columns(2)
start_date = col[0].date_input("Start Date", value=to_datetime("2021-01-01"))
end_date = col[1].date_input("End Date", value=to_datetime("2021-07-31"))
start_date = start_date.strftime("%Y-%m")
end_date = end_date.strftime("%Y-%m")
# max_cloud_cover = st.number_input("Max Cloud Cover (in percentage)", value=5)
# Input: GeoJSON/KML file
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
if uploaded_file is None:
st.stop()
file_name = uploaded_file.name
gdf = read_file(uploaded_file)
gdf = preprocess_gdf(gdf)
selected_shape = st.selectbox("Select the geometry", gdf.Name.values)
if selected_shape is None:
st.stop()
selected_shape = gdf[gdf.Name == selected_shape]
ee_object = geemap.gdf_to_ee(selected_shape)
write_info(f"Type of Geometry: {selected_shape.geometry.type.values[0]}")
st.write("Select the satellite sources:")
satellites = {
"LANDSAT/LC08/C02/T1_TOA": {
"selected": st.checkbox("LANDSAT/LC08/C02/T1_TOA", value=True),
"nir_band": "B5",
"red_band": "B4",
"scale": 30,
},
"COPERNICUS/S2_SR_HARMONIZED": {
"selected": st.checkbox("COPERNICUS/S2_SR_HARMONIZED", value=True),
"nir_band": "B8",
"red_band": "B4",
"scale": 10,
},
}
submit = st.button("Submit", use_container_width=True)
if submit:
if not any(satellites.values()):
st.error("Please select at least one satellite source")
st.stop()
# Create month range
dates = date_range(start_date, end_date, freq="MS").strftime("%Y-%m-%d").tolist()
write_info(
f"Start Date (inclusive): {start_date}, End Date (exclusive): {end_date}"
)
df_list = []
collections = {}
for satellite, attrs in satellites.items():
if not attrs["selected"]:
continue
collection = ee.ImageCollection(satellite)
collection = collection.filterBounds(ee_object)
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
collection = collection.select([attrs["red_band"], attrs["nir_band"], "MSK_CLDPRB"])
else:
collection = collection.select([attrs["red_band"], attrs["nir_band"]])
# collection = collection.filter(ee.Filter.lt(attrs["cloud_cover_var"], max_cloud_cover))
collection = collection.filterDate(start_date, end_date)
collection = collection.map(
lambda image: calculate_ndvi(
image, nir_band=attrs["nir_band"], red_band=attrs["red_band"]
)
)
write_info(f"Number of images in {satellite}: {collection.size().getInfo()}")
progress_bar = st.progress(0)
def monthly_quality_mosaic(start, end, i):
progress_bar.progress((i + 1) / (len(dates) - 1))
collection_filtered = collection.filterDate(start, end)
size = collection_filtered.size().getInfo()
if size == 0:
return None
mosaic = collection_filtered.qualityMosaic("NDVI")
month = to_datetime(start).strftime("%Y-%m")
print(f"Processing {month} with {size} images")
return mosaic.set("system:index", f"{month}")
collection = [monthly_quality_mosaic(start, end, i) for i, (start, end) in enumerate(zip(dates[:-1], dates[1:]))]
collection = list(filter(None, collection))
collection = ee.ImageCollection(collection)
collections[satellite] = collection
save_name = satellite.replace("/", "_")
geemap.zonal_stats(
collection,#.select(["NDVI"]),
ee_object,
f"/tmp/{save_name}.csv",
stat_type="mean",
scale=attrs["scale"],
)
df = read_csv(f"/tmp/{save_name}.csv")
df = postprocess_df(df, name=satellite)
df_list.append(df)
df = reduce(lambda left, right: merge(left, right, on="Date", how="outer"), df_list)
df = df.sort_values("Date")
# drop rows with all NaN values
df = df.dropna(how="all")
# drop columns with all NaN values
df = df.dropna(axis=1, how="all")
df = df.reset_index(drop=True)
st.session_state.df = df
st.session_state.collections = collections
if "df" in st.session_state:
df = st.session_state.df
collections = st.session_state.collections
st.write(df.applymap(lambda x: f"{x:.2f}" if isinstance(x, float) else x))
fig = px.line(df, x="Date", y=df.columns[1:], title='Mean NDVI', markers=True)
fig.update_yaxes(range=[0, 1])
st.plotly_chart(fig)
st.subheader("Visual Inspection")
write_info(f"Centroid of the selected geometry: {selected_shape.geometry.centroid.values[0]}")
cols = st.columns(2)
with cols[0]:
start_date = st.selectbox("Start Date", df.Date, index=0)
start_date_index = df[df.Date == start_date].index[0].item()
with cols[1]:
end_date = st.selectbox("End Date", df.Date, index=len(df.Date) - 1)
end_date_index = df[df.Date == end_date].index[0].item()
for imagery in satellites:
collection = collections[imagery]
for col, date in zip(cols, [start_date, end_date]):
date_index = df[df.Date == date].index[0].item()
image = ee.Image(collections[imagery].toList(collection.size()).get(date_index))
layer = gee_folium.ee_tile_layer(image, {"bands": ["NDVI"], "min": 0, "max": 1}, f"{imagery}_{date}")
with col:
m = leaf_folium.Map()
m.add_layer(layer)
m.add_gdf(selected_shape, layer_name="Selected Geometry")
colors = ["#000000", "#FFFFFF"]
m.add_colorbar(colors, vmin=0, vmax=1)
st.write(f"{imagery} - {date}")
m.to_streamlit()
for col, date in zip(cols, [start_date, end_date]):
esri_date = min(st.session_state.wayback_mapping.keys(), key=lambda x: abs(to_datetime(x) - date))
with col:
m = leaf_folium.Map()
m.add_tile_layer(st.session_state.wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri")
m.add_gdf(selected_shape, layer_name="Selected Geometry")
st.write(f"Esri Wayback Imagery - {esri_date} (Closest to {date})")
m.to_streamlit() |