File size: 18,187 Bytes
f3f89d3
b7947a8
f3f89d3
 
 
522f037
f3f89d3
 
 
4466df0
 
f3f89d3
 
 
b7947a8
f3f89d3
 
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f89d3
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
9637b47
b7947a8
 
 
9637b47
 
 
 
 
bb7c6c8
b7947a8
bb7c6c8
 
b7947a8
 
bb7c6c8
 
 
 
 
 
 
f3f89d3
 
 
 
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f89d3
 
 
 
 
 
 
b7947a8
4927297
 
f3f89d3
 
 
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9637b47
b7947a8
 
 
f3f89d3
b7947a8
 
d795315
201944c
4466df0
 
 
b7947a8
4466df0
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c463e0
 
e7b5fc1
b7947a8
4466df0
 
 
 
b7947a8
 
21b0f34
 
201944c
4466df0
 
201944c
 
f3f89d3
 
b7947a8
f3f89d3
 
4466df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7947a8
 
4466df0
b7947a8
4466df0
 
 
 
 
 
 
 
 
 
b7947a8
 
4466df0
f3f89d3
 
 
 
b7947a8
 
 
 
 
f3f89d3
b7947a8
5c463e0
 
 
 
 
b7947a8
b782672
 
f3f89d3
 
bb7c6c8
 
 
 
 
f3f89d3
622bc33
 
 
 
 
 
 
 
 
04bf9e0
f3f89d3
bb7c6c8
4466df0
 
b7947a8
 
 
 
 
4927297
b7947a8
f3f89d3
4466df0
b7947a8
4466df0
b7947a8
4927297
b7947a8
0254960
 
 
 
 
b7947a8
 
 
 
 
 
 
0254960
 
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f89d3
b7947a8
 
f3f89d3
4466df0
b7947a8
 
 
 
f3f89d3
4466df0
f3f89d3
 
 
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
f3f89d3
4466df0
f3f89d3
4466df0
 
 
b7947a8
 
522f037
4466df0
b7947a8
4466df0
b7947a8
4466df0
b7947a8
 
 
4466df0
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
91f56fd
 
b7947a8
 
 
 
 
 
 
 
4466df0
b7947a8
f3f89d3
b7947a8
f3f89d3
b7947a8
f3f89d3
b7947a8
 
4927297
b7947a8
 
 
 
 
 
 
f3f89d3
b7947a8
 
 
 
 
f3f89d3
b7947a8
 
4466df0
 
 
 
 
 
 
b7947a8
 
4466df0
0254960
b7947a8
 
 
 
4466df0
e7b5fc1
5c463e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7947a8
 
 
 
 
 
 
f3f89d3
 
4466df0
b7947a8
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
from datetime import datetime
import ee
import json
import geemap
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import geopandas as gpd
from shapely.ops import transform
from functools import reduce
import plotly.express as px
import branca.colormap as cm

st.set_page_config(layout="wide")
m = st.markdown("""
<style>
div.stButton > button:first-child {
    background-color: #006400;
    color:#ffffff;
}
</style>""", unsafe_allow_html=True)

# Logo
cols = st.columns([1, 7, 1])
with cols[0]:
    st.image("Final_IITGN-Logo-symmetric-Color.png")
with cols[-1]:
    st.image("IFS.jpg")

# Title
# make title in center
with cols[1]:
    st.markdown(
        f"""
        <h1 style="text-align: center;">Vrinda (वृन्दा): Interactive Vegetation Index Analyzer</h1>
        """,
        unsafe_allow_html=True,
    )

############################################
# Hyperparameters
############################################        
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)

st.write("Select the vegetation indices to calculate:")
all_veg_indices = ["NDVI", "EVI", "EVI2"]
formulas = {
    "NDVI": r"$\frac{NIR - Red}{NIR + Red}$",
    "EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$",
    "EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$",
}
defaults = [True, False, False]
veg_indices = []
for veg_index, default in zip(all_veg_indices, defaults):
    if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default):
        veg_indices.append(veg_index)

with st.expander("EVI/EVI2 Parameters"):
    st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)")
    cols = st.columns(5)
    evi_vars = {}
    for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]):
        value = col.number_input(f'{name}', value=default)
        evi_vars[name] = value

############################################
# Functions
############################################
def daterange_str_to_dates(daterange_str):
    start_date, end_date = daterange_str.split("-")
    start_date = pd.to_datetime(start_date)
    end_date = pd.to_datetime(end_date)
    return start_date, end_date

def daterange_dates_to_str(start_date, end_date):
    return f"{start_date.strftime('%Y/%m/%d')}-{end_date.strftime('%Y/%m/%d')}"

def daterange_str_to_year(daterange_str):
    start_date, _ = daterange_str.split("-")
    year = pd.to_datetime(start_date).year
    return year

def shape_3d_to_2d(shape):
    if shape.has_z:
        return transform(lambda x, y, z: (x, y), shape)
    else:
        return shape

def preprocess_gdf(gdf):
    gdf = gdf.to_crs(epsg=7761) # epsg for Gujarat


    gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
    return gdf

def check_valid_geometry(geometry_gdf):
    geometry = geometry_gdf.geometry.item()
    if geometry.type != "Polygon":
        st.error(
        f"Selected geometry is of type '{geometry.type}'. Please provide a 'Polygon' geometry."
        )
        st.stop()
        
def add_geometry_to_maps(map_list):
    for m in map_list:
        m.add_gdf(buffer_geometry_gdf, layer_name="Geometry Buffer", style_function=lambda x: {"color": "red", "fillOpacity": 0.0})
        m.add_gdf(geometry_gdf, layer_name="Geometry", style_function=lambda x: {"color": "blue", "fillOpacity": 0.0})

def add_indices(image, nir_band, red_band, blue_band):
    # Add negative cloud
    neg_cloud = image.select("MSK_CLDPRB").multiply(-1).rename("Neg_MSK_CLDPRB")
    nir = image.select(nir_band).divide(10000)
    red = image.select(red_band).divide(10000)
    blue = image.select(blue_band).divide(10000)
    numerator = nir.subtract(red)
    ndvi = (numerator).divide(nir.add(red)).rename("NDVI").clamp(-1, 1)
    # EVI formula taken from: https://en.wikipedia.org/wiki/Enhanced_vegetation_index 
    
    denominator = nir.add(red.multiply(evi_vars['C1'])).subtract(blue.multiply(evi_vars['C2'])).add(evi_vars['L'])
    evi = numerator.divide(denominator).multiply(evi_vars['G']).rename("EVI").clamp(-1, 1)
    evi2 = numerator.divide(nir.add(evi_vars['L']).add(red.multiply(evi_vars['C']))).multiply(evi_vars['G']).rename("EVI2").clamp(-1, 1)
    return image.addBands([neg_cloud, ndvi, evi, evi2])

def process_date(daterange, satellite, veg_indices):
    start_date, end_date = daterange
    daterange_str = daterange_dates_to_str(start_date, end_date)
    prefix = f"Processing {satellite} - {daterange_str}"
    try:
        attrs = satellites[satellite]
        collection = attrs["collection"]
        collection = collection.filterBounds(buffer_ee_geometry)
        collection = collection.filterDate(start_date, end_date)
        
        bucket = {}
        for veg_index in veg_indices:
            mosaic_veg_index = collection.qualityMosaic(veg_index)
            fc = geemap.zonal_stats(
                mosaic_veg_index, ee_feature_collection, scale=attrs["scale"], return_fc=True
            ).getInfo()
            mean_veg_index = fc["features"][0]["properties"][veg_index]
            bucket[veg_index] = mean_veg_index
            fc = geemap.zonal_stats(
                mosaic_veg_index, buffer_ee_feature_collection, scale=attrs["scale"], return_fc=True
            ).getInfo()
            buffer_mean_veg_index = fc["features"][0]["properties"][veg_index]
            bucket[f"{veg_index}_buffer"] = buffer_mean_veg_index
            bucket[f"{veg_index}_ratio"] = mean_veg_index / buffer_mean_veg_index
            bucket[f"mosaic_{veg_index}"] = mosaic_veg_index            
            
        # Get median mosaic
        bucket["mosaic_visual_max_ndvi"] = collection.qualityMosaic("NDVI")
        bucket["mosaic_visual_median"] = collection.median()
        bucket["image_visual_least_cloud"] = collection.sort('CLOUDY_PIXEL_PERCENTAGE').first()

        if satellite == "COPERNICUS/S2_SR_HARMONIZED":
            cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100
        else:
            cloud_mask_probability = None
        bucket["Cloud (0 to 1)"] = cloud_mask_probability
        result_df.loc[daterange_str, list(bucket.keys())] = list(bucket.values())
        count = collection.size().getInfo()
        suffix = f" - Processed {count} images"
        write_info(f"{prefix}{suffix}")
    except Exception as e:
        print(e)
        suffix = f" - Imagery not available"
        write_info(f"{prefix}{suffix}")

def write_info(info):
    st.write(f"<span style='color:#006400;'>{info}</span>", unsafe_allow_html=True)


############################################
# One time setup
############################################


def one_time_setup():
    credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
    if os.path.exists(credentials_path):
        pass  # Earth Engine credentials already exist
    elif "EE" in os.environ:  # write the credentials to the file
        ee_credentials = os.environ.get("EE")
        os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
        with open(credentials_path, "w") as f:
            f.write(ee_credentials)
    else:
        raise ValueError(
            f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
        )

    ee.Initialize()

    satellites = {
        "COPERNICUS/S2_SR_HARMONIZED": {
            "scale": 10,
            "collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
            .select(
                ["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"],
                ["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"],
            )
            .map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue")),
        },
    }
    st.session_state.satellites = satellites
    with open("wayback_imagery.json") as f:
        st.session_state.wayback_mapping = json.load(f)

if "one_time_setup_done" not in st.session_state:
    one_time_setup()
    st.session_state.one_time_setup_done = True

satellites = st.session_state.satellites
wayback_mapping = st.session_state.wayback_mapping

############################################
# App
############################################

# Input: Satellite Sources
st.write("Select the satellite sources:")
satellite_selected = {}
for satellite in satellites:
    satellite_selected[satellite] = st.checkbox(satellite, value=True, disabled=True)

# Date range input
max_year = datetime.now().year
jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d")
dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d")
nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
input_daterange = st.date_input("Date Range (Ignore year. App will compute indices for all possible years)", (nov_15, dec_15), jan_1, dec_31)
min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1))
max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1))

# Input: GeoJSON/KML file
file_url = st.query_params.get("file_url", None)
if file_url is None:
    file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml", "shp"])

if file_url is None:
    st.stop()

if isinstance(file_url, str):
    if file_url.startswith("https://drive.google.com/file/d/"):
        ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
        file_url = f"https://drive.google.com/uc?id={ID}"
    elif file_url.startswith("https://drive.google.com/open?id="):
        ID = file_url.replace("https://drive.google.com/open?id=", "")
        file_url = f"https://drive.google.com/uc?id={ID}"

buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1)

input_gdf = preprocess_gdf(gpd.read_file(file_url))

# Input: Geometry
def format_fn(x):
    return input_gdf.drop(columns=["geometry"]).loc[x].to_dict()
input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
geometry_gdf = input_gdf[input_gdf.index == input_geometry_idx]
buffer_geometry_gdf = geometry_gdf.copy()
buffer_geometry_gdf["geometry"] = buffer_geometry_gdf["geometry"].buffer(buffer).difference(geometry_gdf.geometry.unary_union)
check_valid_geometry(geometry_gdf)

# Derived Inputs
ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
ee_feature_collection = ee.FeatureCollection(ee_geometry)
buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
buffer_ee_geometry = buffer_ee_geometry.difference(ee_geometry)
buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)

# visualize the geometry
m = leaf_folium.Map()
keys = list(wayback_mapping.keys())
latest_date = sorted(keys, key=lambda x: pd.to_datetime(x))[-1]
m.add_tile_layer(wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri")
add_geometry_to_maps([m])
write_info(f"""
<div style="text-align: center;">
    Latest Esri Imagery - {latest_date.replace('-', '/')}
</div>
""")
m.to_streamlit()

# Generate stats
stats_df = pd.DataFrame(
    {
        "Area (m^2)": geometry_gdf.area.item(),
        "Perimeter (m)": geometry_gdf.length.item(),
        "Points": json.loads(geometry_gdf.to_crs(4326).to_json())['features'][0]['geometry']['coordinates'],
    }
)
st.write("<h3><div style='text-align: center;'>Geometry Metrics</div></h3>", unsafe_allow_html=True)
st.markdown(f"""| Metric | Value |
| --- | --- |
| Area (m^2) | {stats_df['Area (m^2)'].item():.2f} m^2 = {stats_df['Area (m^2)'].item()/10000:.2f} ha |
| Perimeter (m) | {stats_df['Perimeter (m)'].item():.2f} m |
| Points | {stats_df['Points'][0]} |
""")

stats_csv = stats_df.to_csv(index=False)
st.download_button("Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True)

# Submit
submit = st.button("Calculate Vegetation Indices", use_container_width=True)

st.write("<h2><div style='text-align: center;'>Results</div></h2>", unsafe_allow_html=True)

if submit:
    if not any(satellite_selected.values()):
        st.error("Please select at least one satellite source")
        st.stop()

    # Create range
    start_day = input_daterange[0].day
    start_month = input_daterange[0].month
    end_day = input_daterange[1].day
    end_month = input_daterange[1].month
    
    dates = []
    for year in range(min_year, max_year+1):
        start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}")
        end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}")
        dates.append((start_date, end_date))
    
    result_df = pd.DataFrame()
    for satellite, attrs in satellites.items():
        if not satellite_selected[satellite]:
            continue

        with st.spinner(f"Processing {satellite} ..."):
            progress_bar = st.progress(0)
            for i, daterange in enumerate(dates):
                process_date(daterange, satellite, veg_indices)
                progress_bar.progress((i + 1) / len(dates))

    st.session_state.result = result_df

print("Printing result...")
if "result" in st.session_state:
    result_df = st.session_state.result
    print(result_df.columns)
    

    # drop rows with all NaN values
    result_df = result_df.dropna(how="all")
    # drop columns with all NaN values
    result_df = result_df.dropna(axis=1, how="all")
    print(result_df.columns)
    print(result_df.head(2))
    
    # df.reset_index(inplace=True)
    # df.index = pd.to_datetime(df["index"], format="%Y-%m")
    for column in result_df.columns:
        result_df[column] = pd.to_numeric(result_df[column], errors="ignore")
    
    df_numeric = result_df.select_dtypes(include=["float64"])
    st.write(df_numeric)
    
    df_numeric_csv = df_numeric.to_csv(index=True)
    st.download_button("Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True)
    
    df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index]
    for veg_index in veg_indices:
        fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer"], markers=True)
        fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index))
        st.plotly_chart(fig)

    st.write("<h3><div style='text-align: center;'>Visual Comparison between Two Years</div></h3>", unsafe_allow_html=True)
    cols = st.columns(2)

    with cols[0]:
        year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x))
    with cols[1]:
        year_2 = st.selectbox("Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x))
            
    vis_params = {'min': 0, 'max': 1, 'palette': ['white', 'green']}  # Example visualisation for Sentinel-2

    # Create a colormap and name it as NDVI
    colormap = cm.LinearColormap(
        colors=vis_params['palette'], 
        vmin=vis_params['min'], 
        vmax=vis_params['max']
    )

    for veg_index in veg_indices:
        st.write(f"<h3><div style='text-align: center;'>{veg_index}</div></h3>", unsafe_allow_html=True)
        cols = st.columns(2)
        for col, daterange_str in zip(cols, [year_1, year_2]):
            mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"]
            with col:
                m = gee_folium.Map()
                veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1})
                
                if satellite == "COPERNICUS/S2_SR_HARMONIZED":
                    min_all = 0
                    max_all = 255
                else:
                    raise ValueError(f"Unknown satellite: {satellite}")

                m.add_layer(
                    mosaic.select(veg_index), vis_params
                )
                # add colorbar
                # m.add_colorbar(colors=["#000000", "#00FF00"], vmin=0.0, vmax=1.0)
                add_geometry_to_maps([m])
                m.add_child(colormap)
                m.to_streamlit()

    for name, key in zip(["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)", "RGB (Median Mosaic)"], ["image_visual_least_cloud", "mosaic_visual_max_ndvi", "mosaic_visual_median"]):
        st.write(f"<h3><div style='text-align: center;'>{name}</div></h3>", unsafe_allow_html=True)
        cols = st.columns(2)
        for col, daterange_str in zip(cols, [year_1, year_2]):
            start_date, end_date = daterange_str_to_dates(daterange_str)
            mid_date = start_date + (end_date - start_date) / 2
            esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
            with col:
                m = gee_folium.Map()
                visual_mosaic = result_df.loc[daterange_str, key]
                # visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all})
                
                m.add_layer(
                    visual_mosaic.select(["R", "G", "B"])
                )
                add_geometry_to_maps([m])
                m.to_streamlit()
        
    st.write("<h3><div style='text-align: center;'>Esri RGB Imagery</div></h3>", unsafe_allow_html=True)
    cols = st.columns(2)
    for col, daterange_str in zip(cols, [year_1, year_2]):
        start_date, end_date = daterange_str_to_dates(daterange_str)
        mid_date = start_date + (end_date - start_date) / 2
        esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
        with col:
            m = leaf_folium.Map()
            m.add_tile_layer(wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri")
            add_geometry_to_maps([m])
            write_info(f"""
            <div style="text-align: center;">
                Esri Imagery - {esri_date.replace('-', '/')}
            </div>
            """)
            m.to_streamlit()