File size: 30,578 Bytes
f3f89d3 b7947a8 f3f89d3 522f037 f3f89d3 4466df0 f3f89d3 b7947a8 8e3b10c 8e782ee 114dd95 f3f89d3 debe350 92a7dec debe350 f3f89d3 6e56783 b7947a8 6e56783 b7947a8 0812914 f3f89d3 b7947a8 0812914 b7947a8 6e56783 9637b47 b7947a8 d35782f b7947a8 d35782f 2a278b3 d35782f bb7c6c8 6e56783 bb7c6c8 f3f89d3 6e56783 f3f89d3 cc028f1 114dd95 cc028f1 b7947a8 6e56783 b7947a8 6e56783 b7947a8 6e56783 f3f89d3 6e56783 f3f89d3 f0c88d3 f3f89d3 12eea75 6e56783 1f25e7b b7947a8 1f25e7b 6e56783 b7947a8 6e56783 b7947a8 98e1101 a3fa426 28ff3df 6e56783 c0d8523 6e56783 6e674da 6e56783 6e674da bc64de4 85fe8d3 b3172ef 6e56783 bc64de4 1332314 6e56783 a36eb8d 588d4a9 a3fa426 69d5361 577fc3d 4933d52 90e317e 5f64477 6e56783 a3fa426 28ff3df 6e56783 c0d8523 bc64de4 6e56783 a36eb8d 1332314 7794583 a36eb8d 28ff3df a3fa426 6e56783 1332314 7794583 90e317e 5f64477 a3fa426 6e56783 b7947a8 6e56783 b7947a8 f3f89d3 fa24862 6e56783 b7947a8 d795315 201944c 4466df0 b7947a8 4466df0 6e56783 b7947a8 6e56783 b7947a8 5c463e0 6e56783 b7947a8 4466df0 b7947a8 21b0f34 201944c 4466df0 201944c f3f89d3 6e56783 f3f89d3 b7947a8 f3f89d3 4466df0 b7947a8 4466df0 b7947a8 4466df0 6e56783 4466df0 b7947a8 4466df0 f3f89d3 b7947a8 d35782f b7947a8 d35782f f3f89d3 b7947a8 5c463e0 6e56783 d35782f 6e56783 d35782f bb7c6c8 04bf9e0 f3f89d3 114dd95 1f25e7b 6e56783 06892c7 1f25e7b f3f89d3 12eea75 6e56783 4466df0 b7947a8 4466df0 b7947a8 4990c43 0254960 6e56783 b7947a8 6e56783 0254960 b7947a8 6e56783 b7947a8 d35782f 6e56783 d35782f d7e3dcd d35782f 6e56783 f3f89d3 b7947a8 f3f89d3 4466df0 b7947a8 f3f89d3 d35782f 4466df0 f3f89d3 b7947a8 6e56783 b7947a8 6e56783 b7947a8 6e56783 b7947a8 f3f89d3 4466df0 f3f89d3 4466df0 b7947a8 522f037 4466df0 b7947a8 4466df0 b7947a8 4466df0 b7947a8 4466df0 b7947a8 6e56783 b7947a8 6e56783 b7947a8 91f56fd 6e56783 b7947a8 6e56783 b7947a8 150cd0a b7947a8 4466df0 07bdfbd fb9780e 07bdfbd 6e56783 f3f89d3 b7947a8 f3f89d3 b7947a8 f3f89d3 6e56783 b7947a8 6e56783 f3f89d3 b7947a8 f3f89d3 b7947a8 0b9c7a3 b7947a8 6e56783 4466df0 90e317e c00bfce fa24862 c00bfce 127d480 b0f18ce 90e317e 05de1d2 90e317e 5f64477 c91af81 e5cd5db c91af81 90e317e 0254960 b7947a8 5e56dc9 c175a0b 05de1d2 c175a0b 5e56dc9 b7947a8 4466df0 6e56783 12e0877 6e56783 5c463e0 6e56783 5c463e0 6e56783 b7947a8 f3f89d3 4466df0 b7947a8 6e56783 b7947a8 6e56783 a3fa426 d35782f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
import os
from datetime import datetime
import ee
import json
import geemap
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import geopandas as gpd
from shapely.ops import transform
from functools import reduce
import plotly.express as px
import branca.colormap as cm
import folium
import pyproj
from io import StringIO, BytesIO
import requests
import kml2geojson
print(geemap.__version__)
print(folium.__version__)
print(geemap.Report())
st.set_page_config(layout="wide")
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# Logo
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co/spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/Final_IITGN-Logo-symmetric-Color.png" style="width: 10%; margin-right: auto;">
<img src="https://huggingface.co/spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/IFS.jpg" style="width: 10%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
# Title
# make title in center
st.markdown(
f"""
<h1 style="text-align: center;">Vrinda (वृन्दा): Interactive Vegetation Index Analyzer</h1>
""",
unsafe_allow_html=True,
)
############################################
# Hyperparameters
############################################
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
# Input: GeoJSON/KML file
file_url = st.query_params.get("file_url", None)
if file_url is None:
file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml", "shp"])
def show_credits():
# Add credits
st.write(
"""
<div style="display: flex; justify-content: center; align-items: center; margin-top: 20px;">
<p style="text-align: left;">This tool is developed by <a href="https://sustainability-lab.github.io/">Sustainability Lab</a>, <a href="https://www.iitgn.ac.in/">IIT Gandhinagar</a> and supported by <a href="https://forests.gujarat.gov.in/">Gujarat Forest Department</a></p>""",
unsafe_allow_html=True,
)
if file_url is None:
st.warning(
"Please provide a KML or GeoJSON URL as a query parameter, e.g., `https://sustainabilitylabiitgn-ndvi-perg.hf.space?file_url=<your_file_url>` or upload a file."
)
show_credits()
st.stop()
with st.expander("Advanced Settings"):
st.write("Select the vegetation indices to calculate:")
all_veg_indices = ["NDVI", "EVI", "EVI2"]
formulas = {
"NDVI": r"$\frac{NIR - Red}{NIR + Red}$",
"EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$",
"EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$",
}
defaults = [True, False, False]
veg_indices = []
for veg_index, default in zip(all_veg_indices, defaults):
if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default):
veg_indices.append(veg_index)
st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)")
cols = st.columns(5)
evi_vars = {}
for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]):
value = col.number_input(f"{name}", value=default)
evi_vars[name] = value
############################################
# Functions
############################################
# Function of find best suited statewise EPSG code
def get_gdf_from_file_url(file_url):
if isinstance(file_url, str):
if file_url.startswith("https://drive.google.com/file/d/"):
ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
file_url = f"https://drive.google.com/uc?id={ID}"
elif file_url.startswith("https://drive.google.com/open?id="):
ID = file_url.replace("https://drive.google.com/open?id=", "")
file_url = f"https://drive.google.com/uc?id={ID}"
response = requests.get(file_url)
bytes_data = BytesIO(response.content)
string_data = response.text
else:
bytes_data = BytesIO(file_url.getvalue())
string_data = file_url.getvalue().decode("utf-8")
if string_data.startswith("<?xml"):
geojson = kml2geojson.convert(bytes_data)
features = geojson[0]["features"]
epsg = 4326
input_gdf = gpd.GeoDataFrame.from_features(features, crs=f"EPSG:{epsg}")
else:
input_gdf = gpd.read_file(bytes_data)
return input_gdf
def find_best_epsg(geometry):
if geometry.geom_type == 'Polygon':
centroid = geometry.centroid
else:
st.error("Geometry is not Polygon !!!")
st.stop()
common_epsg_codes = [7756, #Andhra Pradesh
7757, #Arunachal Pradesh
7758, #Assam
7759, #Bihar
7760, #Delhi
7761, #Gujarat
7762, #Haryana
7763, #HimachalPradesh
7764, #JammuAndKashmir
7765, #Jharkhand
7766, #MadhyaPradesh
7767, #Maharastra
7768, #Manipur
7769, #Meghalaya
7770, #Nagaland
7772, #Orissa
7773, #Punjab
7774, #Rajasthan
7775, #UttarPradesh
7776, #Uttaranchal
7777, #A&N
7778, #Chattisgarh
7779, #Goa
7780, #Karnataka
7781, #Kerala
7782, #Lakshadweep
7783, #Mizoram
7784, #Sikkim
7785, #TamilNadu
7786, #Tripura
7787, #WestBengal
7771, #NE India
7755, #India
]
for epsg in common_epsg_codes:
crs = pyproj.CRS.from_epsg(epsg)
area_of_use = crs.area_of_use.bounds # Get the bounding box of the area of use
#check if centroid of polygon lies in teh bounds of the crs
if (area_of_use[0] <= centroid.x <= area_of_use[2]) and (area_of_use[1] <= centroid.y <= area_of_use[3]):
return epsg # Return the best suitable EPSG code
def daterange_str_to_dates(daterange_str):
start_date, end_date = daterange_str.split("-")
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
return start_date, end_date
def daterange_dates_to_str(start_date, end_date):
return f"{start_date.strftime('%Y/%m/%d')}-{end_date.strftime('%Y/%m/%d')}"
def daterange_str_to_year(daterange_str):
start_date, _ = daterange_str.split("-")
year = pd.to_datetime(start_date).year
return year
def shape_3d_to_2d(shape):
if shape.has_z:
return transform(lambda x, y, z: (x, y), shape)
else:
return shape
def preprocess_gdf(gdf):
gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
gdf["geometry"] = gdf.buffer(0) # Fixes some invalid geometries
return gdf
def to_best_crs(gdf):
best_epsg_code = find_best_epsg(gdf["geometry"].iloc[0])
gdf = gdf.to_crs(epsg=best_epsg_code)
return gdf
def is_valid_polygon(geometry_gdf):
geometry = geometry_gdf.geometry.item()
return (geometry.type == "Polygon") and (not geometry.is_empty)
def add_geometry_to_maps(map_list, opacity=0.0):
for m in map_list:
m.add_gdf(
buffer_geometry_gdf,
layer_name="Geometry Buffer",
style_function=lambda x: {"color": "red", "fillOpacity": opacity, "fillColor": "red"},
)
m.add_gdf(
geometry_gdf,
layer_name="Geometry",
style_function=lambda x: {"color": "blue", "fillOpacity": opacity, "fillColor": "blue"},
)
def get_dem_slope_maps(buffer_ee_geometry):
# Create the map for DEM
dem_map = gee_folium.Map(controls={'scale':'bottomleft'})
dem_map.add_tile_layer(
wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri"
)
dem_layer = ee.Image("USGS/SRTMGL1_003")
# Set the target resolution to 10 meters
target_resolution = 10
dem_layer = (
dem_layer.resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution).clip(buffer_ee_geometry)
)
# Generate contour lines using elevation thresholds
terrain = ee.Algorithms.Terrain(dem_layer)
contour_interval = 1
contours = (
terrain.select("elevation").subtract(terrain.select("elevation").mod(contour_interval)).rename("contours")
)
# Calculate the minimum and maximum values
stats = contours.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13)
max_value = stats.get("contours_max").getInfo()
min_value = stats.get("contours_min").getInfo()
vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
dem_map.addLayer(contours, vis_params, "Contours")
# Create a colormap
cmap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
tick_size = int((max_value-min_value)/4)
dem_map.add_legend(title="Elevation (m)",
legend_dict={'{}-{} m'.format(min_value, min_value+tick_size): '#0000FF',
'{}-{} m'.format(min_value+tick_size, min_value+2*tick_size): '#00FF00',
'{}-{} m'.format(min_value+2*tick_size, min_value+3*tick_size): '#FFFF00',
'{}-{} m'.format(min_value+3*tick_size, max_value): '#FF0000'},
position='bottomright', draggable=False)
# Create the map for Slope
slope_map = gee_folium.Map(controls={'scale':'bottomleft'})
slope_map.add_tile_layer(
wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri"
)
# Calculate slope from the DEM
slope_layer = (
ee.Terrain.slope(
ee.Image("USGS/SRTMGL1_003").resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution)
)
.clip(buffer_ee_geometry)
.rename("slope")
)
# Calculate the minimum and maximum values
stats = slope_layer.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13)
max_value = int(stats.get("slope_max").getInfo())
min_value = int(stats.get("slope_min").getInfo())
vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
slope_map.addLayer(slope_layer, vis_params, "Slope Layer")
# Create a colormap
colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
tick_size=int((max_value-min_value)/4)
slope_map.add_legend(title="Slope (degrees)",
legend_dict={'{}-{} deg'.format(min_value, min_value+tick_size): '#0000FF',
'{}-{} deg'.format(min_value+tick_size, min_value+2*tick_size): '#00FF00',
'{}-{} deg'.format(min_value+2*tick_size, min_value+3*tick_size): '#FFFF00',
'{}-{} deg'.format(min_value+3*tick_size, max_value): '#FF0000'},
position='bottomright', draggable=False)
return dem_map, slope_map
def add_indices(image, nir_band, red_band, blue_band):
# Add negative cloud
neg_cloud = image.select("MSK_CLDPRB").multiply(-1).rename("Neg_MSK_CLDPRB")
nir = image.select(nir_band).divide(10000)
red = image.select(red_band).divide(10000)
blue = image.select(blue_band).divide(10000)
numerator = nir.subtract(red)
ndvi = (numerator).divide(nir.add(red)).rename("NDVI").clamp(-1, 1)
# EVI formula taken from: https://en.wikipedia.org/wiki/Enhanced_vegetation_index
denominator = nir.add(red.multiply(evi_vars["C1"])).subtract(blue.multiply(evi_vars["C2"])).add(evi_vars["L"])
evi = numerator.divide(denominator).multiply(evi_vars["G"]).rename("EVI").clamp(-1, 1)
evi2 = (
numerator.divide(nir.add(evi_vars["L"]).add(red.multiply(evi_vars["C"])))
.multiply(evi_vars["G"])
.rename("EVI2")
.clamp(-1, 1)
)
return image.addBands([neg_cloud, ndvi, evi, evi2])
def get_histogram(image, geometry, bins):
# Get image values as a list
values = image.reduceRegion(
reducer=ee.Reducer.toList(),
geometry=geometry,
scale=10,
maxPixels=1e13
).get('NDVI')
# Convert values to a NumPy array
values_array = np.array(values.getInfo())
# Compute the histogram on bins
hist, bin_edges = np.histogram(values_array, bins=bins)
return hist, bin_edges
def process_date(daterange, satellite, veg_indices):
start_date, end_date = daterange
daterange_str = daterange_dates_to_str(start_date, end_date)
prefix = f"Processing {satellite} - {daterange_str}"
try:
attrs = satellites[satellite]
collection = attrs["collection"]
collection = collection.filterBounds(buffer_ee_geometry)
collection = collection.filterDate(start_date, end_date)
bucket = {}
for veg_index in veg_indices:
mosaic_veg_index = collection.qualityMosaic(veg_index)
fc = geemap.zonal_stats(
mosaic_veg_index, ee_feature_collection, scale=attrs["scale"], return_fc=True
).getInfo()
mean_veg_index = fc["features"][0]["properties"][veg_index]
bucket[veg_index] = mean_veg_index
fc = geemap.zonal_stats(
mosaic_veg_index, buffer_ee_feature_collection, scale=attrs["scale"], return_fc=True
).getInfo()
buffer_mean_veg_index = fc["features"][0]["properties"][veg_index]
bucket[f"{veg_index}_buffer"] = buffer_mean_veg_index
bucket[f"{veg_index}_ratio"] = mean_veg_index / buffer_mean_veg_index
bucket[f"mosaic_{veg_index}"] = mosaic_veg_index
# Get median mosaic
bucket["mosaic_visual_max_ndvi"] = collection.qualityMosaic("NDVI")
bucket["mosaic_visual_median"] = collection.median()
bucket["image_visual_least_cloud"] = collection.sort("CLOUDY_PIXEL_PERCENTAGE").first()
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100
else:
cloud_mask_probability = None
bucket["Cloud (0 to 1)"] = cloud_mask_probability
result_df.loc[daterange_str, list(bucket.keys())] = list(bucket.values())
count = collection.size().getInfo()
suffix = f" - Processed {count} images"
write_info(f"{prefix}{suffix}")
except Exception as e:
print(e)
suffix = f" - Imagery not available"
write_info(f"{prefix}{suffix}")
def write_info(info):
st.write(f"<span style='color:#006400;'>{info}</span>", unsafe_allow_html=True)
############################################
# One time setup
############################################
def one_time_setup():
credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
if os.path.exists(credentials_path):
pass # Earth Engine credentials already exist
elif "EE" in os.environ: # write the credentials to the file
ee_credentials = os.environ.get("EE")
os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
with open(credentials_path, "w") as f:
f.write(ee_credentials)
else:
raise ValueError(
f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
)
ee.Initialize()
satellites = {
"COPERNICUS/S2_SR_HARMONIZED": {
"scale": 10,
"collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
.select(
["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"],
["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"],
)
.map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue")),
},
}
st.session_state.satellites = satellites
with open("wayback_imagery.json") as f:
st.session_state.wayback_mapping = json.load(f)
if "one_time_setup_done" not in st.session_state:
one_time_setup()
st.session_state.one_time_setup_done = True
satellites = st.session_state.satellites
wayback_mapping = st.session_state.wayback_mapping
############################################
# App
############################################
# Input: Satellite Sources
st.markdown(f"Satellite source: `{list(satellites.keys())[0]}`")
satellite_selected = {}
for satellite in satellites:
satellite_selected[satellite] = satellite
# Date range input
max_year = datetime.now().year
jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d")
dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d")
nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
input_daterange = st.date_input(
"Date Range (Ignore year. App will compute indices for this date range in each year starting from \"Minimum Year\" to \"Maximum Year\")", (nov_15, dec_15), jan_1, dec_31
)
cols = st.columns(2)
with cols[0]:
min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1))
with cols[1]:
max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1))
buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1)
input_gdf = get_gdf_from_file_url(file_url)
input_gdf = preprocess_gdf(input_gdf)
if len(input_gdf) > 1:
st.warning(f"Only the first polygon in the KML will be processed; all other geometries will be ignored.")
# input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
for i in range(len(input_gdf)):
geometry_gdf = input_gdf[input_gdf.index == i]
if is_valid_polygon(geometry_gdf):
break
else:
st.error(f"No polygon found inside KML. Please check the KML file.")
st.stop()
geometry_gdf = to_best_crs(geometry_gdf)
outer_geometry_gdf = geometry_gdf.copy()
outer_geometry_gdf["geometry"] = outer_geometry_gdf["geometry"].buffer(buffer)
buffer_geometry_gdf = (
outer_geometry_gdf.difference(geometry_gdf).reset_index().drop(columns="index")
) # reset index forces GeoSeries to GeoDataFrame
buffer_geometry_gdf["Name"] = "Buffer"
# Derived Inputs
ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
ee_feature_collection = ee.FeatureCollection(ee_geometry)
buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)
outer_ee_geometry = ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
outer_ee_feature_collection = ee.FeatureCollection(outer_ee_geometry)
# visualize the geometry
m = leaf_folium.Map()
keys = list(wayback_mapping.keys())
latest_date = sorted(keys, key=lambda x: pd.to_datetime(x))[-1]
m.add_tile_layer(
wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri"
)
# m.add_layer(buffer_ee_feature_collection)
add_geometry_to_maps([m], opacity=0.3)
write_info(
f"""
<div style="text-align: center;">
Latest Esri Imagery - {latest_date.replace('-', '/')}
</div>
"""
)
m.to_streamlit()
# Generate stats
stats_df = pd.DataFrame(
{
"Area (m^2)": geometry_gdf.area.item(),
"Perimeter (m)": geometry_gdf.length.item(),
"Points": json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"],
}
)
st.write("<h3><div style='text-align: center;'>Geometry Metrics</div></h3>", unsafe_allow_html=True)
# st.markdown(
# f"""| Metric | Value |
# | --- | --- |
# | Area (m^2) | {stats_df['Area (m^2)'].item():.2f} m^2 = {stats_df['Area (m^2)'].item()/10000:.2f} ha |
# | Perimeter (m) | {stats_df['Perimeter (m)'].item():.2f} m |
# """
# )
st.markdown(
f"""
<div style="display: flex; justify-content: center;">
<table style="border-collapse: collapse; width: 75%; text-align: center;">
<tr>
<th style="border: 1px solid black; padding: 8px;">Metric</th>
<th style="border: 1px solid black; padding: 8px;">Value</th>
</tr>
<tr>
<td style="border: 1px solid black; padding: 8px;">Area</td>
<td style="border: 1px solid black; padding: 8px;">{stats_df['Area (m^2)'].item()/10000:.2f} ha</td>
</tr>
<tr>
<td style="border: 1px solid black; padding: 8px;">Perimeter</td>
<td style="border: 1px solid black; padding: 8px;">{stats_df['Perimeter (m)'].item():.2f} m</td>
</tr>
</table>
</div>
""",
unsafe_allow_html=True
)
stats_csv = stats_df.to_csv(index=False)
st.download_button("Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True)
# Submit
submit = st.button("Calculate Vegetation Indices", use_container_width=True)
if submit:
st.write("<h2><div style='text-align: center;'>Results</div></h2>", unsafe_allow_html=True)
if not any(satellite_selected.values()):
st.error("Please select at least one satellite source")
st.stop()
# Create range
start_day = input_daterange[0].day
start_month = input_daterange[0].month
end_day = input_daterange[1].day
end_month = input_daterange[1].month
dates = []
for year in range(min_year, max_year + 1):
start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}")
end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}")
dates.append((start_date, end_date))
result_df = pd.DataFrame()
for satellite, attrs in satellites.items():
if not satellite_selected[satellite]:
continue
with st.spinner(f"Processing {satellite} ..."):
progress_bar = st.progress(0)
for i, daterange in enumerate(dates):
process_date(daterange, satellite, veg_indices)
progress_bar.progress((i + 1) / len(dates))
st.session_state.result = result_df
print("Printing result...")
if "result" in st.session_state:
result_df = st.session_state.result
print(result_df.columns)
# drop rows with all NaN values
result_df = result_df.dropna(how="all")
# drop columns with all NaN values
result_df = result_df.dropna(axis=1, how="all")
print(result_df.columns)
print(result_df.head(2))
# df.reset_index(inplace=True)
# df.index = pd.to_datetime(df["index"], format="%Y-%m")
for column in result_df.columns:
result_df[column] = pd.to_numeric(result_df[column], errors="ignore")
df_numeric = result_df.select_dtypes(include=["float64"])
st.write(df_numeric)
df_numeric_csv = df_numeric.to_csv(index=True)
st.download_button(
"Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True
)
df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index]
for veg_index in veg_indices:
fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer", f"{veg_index}_ratio"], markers=True)
fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index))
st.plotly_chart(fig)
st.write(
"<h3><div style='text-align: center;'>DEM and Slope from SRTM at 30m resolution</div></h3>",
unsafe_allow_html=True,
)
cols = st.columns(2)
dem_map, slope_map = get_dem_slope_maps(ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__))
for col, param_map, title in zip(cols, [dem_map, slope_map], ["DEM Map", "Slope Map"]):
with col:
param_map.add_gdf(
geometry_gdf,
layer_name="Geometry",
style_function=lambda x: {"color": "blue", "fillOpacity": 0.0, "fillColor": "blue"},
)
write_info(f"""<div style="text-align: center;">{title}</div>""")
param_map.addLayerControl()
param_map.to_streamlit()
st.write(
"<h3><div style='text-align: center;'>Visual Comparison between Two Years</div></h3>", unsafe_allow_html=True
)
cols = st.columns(2)
with cols[0]:
year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x))
with cols[1]:
year_2 = st.selectbox(
"Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x)
)
vis_params = {"min": 0, "max": 1, "palette": ["white", "green"]} # Example visualisation for Sentinel-2
# Create a colormap and name it as NDVI
colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
for veg_index in veg_indices:
st.write(f"<h3><div style='text-align: center;'>{veg_index}</div></h3>", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"]
with col:
m = gee_folium.Map()
m.add_tile_layer(wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri")
veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1})
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
min_all = 0
max_all = 255
else:
raise ValueError(f"Unknown satellite: {satellite}")
if veg_index=='NDVI':
bins=[-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1]
histogram, bin_edges = get_histogram(mosaic.select(veg_index), ee_geometry, bins)
total_pix = np.sum(histogram)
formatted_histogram = [f"{h*100/total_pix:.2f}" for h in histogram]
print(histogram, bin_edges, bins, formatted_histogram)
m.add_legend(title="NDVI Class/Value",
legend_dict={'<0:Waterbody ({}%)'.format(formatted_histogram[0]): '#0000FF',
'0-0.1: Open ({}%)'.format(formatted_histogram[1]): '#FF0000',
'0.1-0.2: Highly Degraded ({}%)'.format(formatted_histogram[2]):'#FFFF00',
'0.2-0.3: Degraded ({}%)'.format(formatted_histogram[3]): '#FFA500',
'0.3-0.4: Moderately Degraded ({}%)'.format(formatted_histogram[4]): '#00FE00',
'0.4-0.5: Dense ({}%)'.format(formatted_histogram[5]): '#00A400',
'>0.5: Very Dense ({}%)'.format(formatted_histogram[6]): '#006D00',
},
position='bottomright', draggable=False)
ndvi_vis_params = {'min': -0.1,
'max': 0.6,
'palette': ['#0000FF', '#FF0000', '#FFFF00', '#FFA500', '#00FE00', '#00A400', '#006D00']}
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), ndvi_vis_params)
# add colorbar
# m.add_colorbar(colors=["#000000", "#00FF00"], vmin=0.0, vmax=1.0)
if veg_index!='NDVI':
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), vis_params)
m.add_child(colormap)
add_geometry_to_maps([m])
m.to_streamlit()
for name, key in zip(
["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)"],
["image_visual_least_cloud", "mosaic_visual_max_ndvi"],
):
st.write(f"<h3><div style='text-align: center;'>{name}</div></h3>", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
start_date, end_date = daterange_str_to_dates(daterange_str)
mid_date = start_date + (end_date - start_date) / 2
esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
with col:
m = gee_folium.Map()
visual_mosaic = result_df.loc[daterange_str, key]
# visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all})
m.add_layer(visual_mosaic.select(["R", "G", "B"]))
add_geometry_to_maps([m])
m.to_streamlit()
st.write("<h3><div style='text-align: center;'>Esri RGB Imagery</div></h3>", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
start_date, end_date = daterange_str_to_dates(daterange_str)
mid_date = start_date + (end_date - start_date) / 2
esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
with col:
m = leaf_folium.Map()
m.add_tile_layer(wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri")
add_geometry_to_maps([m])
write_info(
f"""
<div style="text-align: center;">
Esri Imagery - {esri_date.replace('-', '/')}
</div>
"""
)
m.to_streamlit()
show_credits() |