File size: 13,528 Bytes
f3f89d3 522f037 f3f89d3 4466df0 f3f89d3 522f037 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 42d40bd f3f89d3 522f037 4466df0 522f037 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 522f037 f3f89d3 4466df0 522f037 4466df0 f3f89d3 4466df0 522f037 4466df0 0254960 522f037 1723772 522f037 0254960 522f037 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 522f037 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 522f037 4466df0 522f037 4466df0 f3f89d3 4466df0 91f56fd 522f037 91f56fd 522f037 b673a1f f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 f3f89d3 4466df0 0254960 4466df0 0254960 4466df0 f3f89d3 4466df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import utm
import ee
import json
import geojson
import geemap
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import geopandas as gpd
from shapely.ops import transform
from functools import reduce
import plotly.express as px
st.set_page_config(layout="wide")
############################################
# Functions
############################################
def shape_3d_to_2d(shape):
if shape.has_z:
return transform(lambda x, y, z: (x, y), shape)
else:
return shape
def preprocess_gdf(gdf):
gdf = gdf.to_crs(epsg=4326)
gdf = gdf[["Name", "geometry"]]
gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
return gdf
def calculate_ndvi(image, nir_band, red_band):
nir = image.select(nir_band)
red = image.select(red_band)
ndvi = (nir.subtract(red)).divide(nir.add(red)).rename("NDVI")
return image.addBands(ndvi)
def process_date(date, satellite):
try:
attrs = satellites[satellite]
collection = attrs["collection"]
collection = collection.filterBounds(ee_geometry)
str_start_date = date+"-01"
start_date = pd.to_datetime(str_start_date)
end_date = start_date + pd.DateOffset(months=1)
write_info(f"Processing {satellite} - {start_date} to {end_date}")
collection = collection.filterDate(start_date, end_date)
mosaic = collection.qualityMosaic("NDVI")
fc = geemap.zonal_stats(
mosaic, ee_feature_collection, scale=attrs["scale"], return_fc=True
).getInfo()
mean_ndvi = fc["features"][0]["properties"]["NDVI"]
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100
else:
cloud_mask_probability = None
except Exception as e:
print(e)
mosaic = None
mean_ndvi = None
cloud_mask_probability = None
return mosaic, mean_ndvi, cloud_mask_probability
def postprocess_df(df, name):
df = df.T
df = df.reset_index()
ndvi_df = df[df["index"].str.contains("NDVI")]
ndvi_df["index"] = pd.to_datetime(ndvi_df["index"], format="%Y-%m_NDVI")
ndvi_df = ndvi_df.rename(columns={"index": "Date", 0: name})
cloud_mask_probability = df[df["index"].str.contains("MSK_CLDPRB")]
cloud_mask_probability["index"] = pd.to_datetime(
cloud_mask_probability["index"], format="%Y-%m_MSK_CLDPRB"
)
cloud_mask_probability = cloud_mask_probability.rename(
columns={"index": "Date", 0: f"{name}_cloud_proba"}
)
# normalize
cloud_mask_probability[f"{name}_cloud_proba"] = (
cloud_mask_probability[f"{name}_cloud_proba"] / 100
)
df = pd.merge(ndvi_df, cloud_mask_probability, on="Date", how="outer")
return df
def write_info(info):
st.write(f"<span style='color:#00FF00;'>{info}</span>", unsafe_allow_html=True)
############################################
# One time setup
############################################
def one_time_setup():
credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
if os.path.exists(credentials_path):
pass # Earth Engine credentials already exist
elif "EE" in os.environ: # write the credentials to the file
ee_credentials = os.environ.get("EE")
os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
with open(credentials_path, "w") as f:
f.write(ee_credentials)
else:
raise ValueError(
f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
)
ee.Initialize()
satellites = {
# "LANDSAT/LC08/C02/T1_TOA": {
# "scale": 30,
# "collection": ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")
# .select(["B2", "B3", "B4", "B5"], ["B", "G", "R", "NIR"])
# .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")),
# },
"COPERNICUS/S2_SR_HARMONIZED": {
"scale": 10,
"collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
.select(
["B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"],
["Red", "NIR", "MSK_CLDPRB", "R", "G", "B"],
)
.map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="Red")),
},
# "LANDSAT/LC09/C02/T1_L2": {
# "scale": 30,
# "collection": ee.ImageCollection("LANDSAT/LC09/C02/T1_L2")
# .select(["SR_B2", "SR_B3", "SR_B4", "SR_B5"], ["B", "G", "R", "NIR"])
# .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")),
# },
# "LANDSAT/LC08/C02/T1_L2": {
# "scale": 30,
# "collection": ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")
# .select(["SR_B2", "SR_B3", "SR_B4", "SR_B5"], ["B", "G", "R", "NIR"])
# .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")),
# },
# "LANDSAT/LE07/C02/T1_L2": {
# "scale": 30,
# "collection": ee.ImageCollection("LANDSAT/LE07/C02/T1_L2")
# .select(["SR_B2", "SR_B3", "SR_B4", "SR_B5"], ["B", "G", "R", "NIR"])
# .map(lambda image: calculate_ndvi(image, nir_band="NIR", red_band="R")),
# },
}
st.session_state.satellites = satellites
with open("wayback_imagery.json") as f:
st.session_state.wayback_mapping = json.load(f)
if "one_time_setup_done" not in st.session_state:
one_time_setup()
st.session_state.one_time_setup_done = True
else:
satellites = st.session_state.satellites
wayback_mapping = st.session_state.wayback_mapping
############################################
# App
############################################
# Title
# make title in center
st.markdown(
f"""
<h1 style="text-align: center;">NDVI Explorer</h1>
""",
unsafe_allow_html=True,
)
# Input: Date and Cloud Cover
col = st.columns(4)
month_of_interest = col[0].selectbox("Month of Interest", list(range(1, 13)), index=11)
start_year = col[1].selectbox("Start Year", list(range(2014, 2027)), index=6)
end_year = col[2].selectbox("End Year", list(range(2014, 2027)), index=9) + 1
start_date = f"{start_year}-{month_of_interest:02d}"
end_date = f"{end_year}-{month_of_interest:02d}"
# Input: GeoJSON/KML file
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
if uploaded_file is None:
st.stop()
gdf = preprocess_gdf(gpd.read_file(uploaded_file))
# Input: Geometry
selected_geometry = st.selectbox("Select the geometry", gdf.Name.values)
selected_geometry_gdf = gdf[gdf.Name == selected_geometry]
selected_geometry = selected_geometry_gdf.iloc[0].geometry
if selected_geometry.type != "Polygon":
st.error(
f"Selected geometry is of type {selected_geometry.type}. Please provide a polygon geometry."
)
st.stop()
# Derived Inputs
selected_geometry = selected_geometry.__geo_interface__
ee_geometry = ee.Geometry(selected_geometry)
_, lonlat = ee_geometry.centroid().getInfo().values()
lon, lat = lonlat
ee_feature_collection = ee.FeatureCollection(ee_geometry)
feature_collection = geojson.FeatureCollection([{"type": "Feature", "geometry": selected_geometry, "properties": {"name": "Selected Geometry"}}])
x, y, zone, _ = utm.from_latlon(lat, lon)
epsg = f"EPSG:326{zone}"
selected_geometry_gdf = selected_geometry_gdf.to_crs(epsg)
area = selected_geometry_gdf.area.values[0]
perimeter = selected_geometry_gdf.length.values[0]
stats_df = pd.DataFrame(
{
"Area (km^2)": [f"{area/1e6:.2f}"],
"Perimeter (km)": [f"{perimeter/1e3:.2f}"],
"Centroid (lat, lon)": [f"{lat:.6f}, {lon:.6f}"],
"Points": np.array(selected_geometry['coordinates']).tolist(),
}
)
# visualize the geometry
m = leaf_folium.Map()
keys = list(wayback_mapping.keys())
latest_date = sorted(keys, key=lambda x: pd.to_datetime(x))[-1]
m.add_tile_layer(wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date}", attribution="Esri")
m.add_geojson(feature_collection)
write_info(f"Visual Esri Wayback Basemap - {latest_date}")
m.to_streamlit()
st.write(stats_df)
# download option
stats_csv = stats_df.to_csv()
st.download_button("Download Geometry Stats", stats_csv, "geometry_stats.csv", "text/csv")
# Input: Satellite Sources
st.write("Select the satellite sources:")
satellite_selected = {}
for satellite in satellites:
satellite_selected[satellite] = st.checkbox(satellite, value=True)
# Submit
submit = st.button("Submit", use_container_width=True)
if submit:
if not any(satellite_selected.values()):
st.error("Please select at least one satellite source")
st.stop()
# Create month range
# print(start_date, end_date)
dates = pd.date_range(start_date, end_date, freq="Y").strftime("%Y-%m").tolist()
# print(dates)
# asjasndjasndj
write_info(
f"Start Date (inclusive): {start_date}, End Date (exclusive): {end_date}"
)
result = {key: {} for key in satellites}
for satellite, attrs in satellites.items():
if not satellite_selected[satellite]:
continue
with st.spinner(f"Processing {satellite} ..."):
progress_bar = st.progress(0)
for i, date in enumerate(dates):
mosaic, mean_ndvi, cloud_proba = process_date(date, satellite)
result[satellite][date] = {
"mosaic": mosaic,
"mean_ndvi": mean_ndvi,
"cloud_mask_probability": cloud_proba,
}
progress_bar.progress((i + 1) / len(dates))
st.session_state.result = result
if "result" in st.session_state:
result = st.session_state.result
df_list = []
for satellite, satellite_result in result.items():
satellite_df = pd.DataFrame(satellite_result).T
satellite_df.rename(
columns={
"mean_ndvi": f"NDVI_{satellite}",
"mosaic": f"Mosaic_{satellite}",
"cloud_mask_probability": f"Cloud_{satellite}",
},
inplace=True,
)
# drop rows with all NaN values
satellite_df = satellite_df.dropna(how="all")
# drop columns with all NaN values
satellite_df = satellite_df.dropna(axis=1, how="all")
df_list.append(satellite_df)
# merge outer on index of the dataframes
df = reduce(
lambda left, right: pd.merge(
left, right, left_index=True, right_index=True, how="outer"
),
df_list,
)
df.reset_index(inplace=True)
df.index = pd.to_datetime(df["index"], format="%Y-%m")
for column in df.columns:
df[column] = pd.to_numeric(df[column], errors="ignore")
df_numeric = df.select_dtypes(include=["float64"])
st.write(df_numeric)
# give streamlit option to download the data
csv = df_numeric.to_csv()
st.download_button("Download Time Series", csv, "data.csv", "text/csv")
fig = px.line(df, y=df_numeric.columns[0:1], title="Mean NDVI", markers=True)
fig.update_yaxes(range=[-0.2, 1])
st.plotly_chart(fig)
st.subheader("Visual Inspection")
write_info(f"Centroid of the selected geometry (lat, lon): ({lat}, {lon})")
cols = st.columns(2)
df_dates = df.index.strftime("%Y-%m").tolist()
with cols[0]:
date_1 = st.selectbox("Month 1", df_dates, index=0)
with cols[1]:
date_2 = st.selectbox("Month 2", df_dates, index=len(df.index) - 1)
for satellite in satellites:
for col, date in zip(cols, [date_1, date_2]):
if f"Mosaic_{satellite}" not in df.columns:
continue
mosaic = df.loc[pd.to_datetime(date), f"Mosaic_{satellite}"]
with col:
maps = [leaf_folium.Map(), leaf_folium.Map()]
ndvi_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["NDVI"], "min": -0.2, "max": 1})
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
min_all = 0
max_all = 255
else:
raise ValueError(f"Unknown satellite: {satellite}")
visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all})
maps[0].add_layer(
ndvi_layer,
)
# add colorbar
maps[0].add_colorbar(colors=["#000000", "#FFFFFF"], vmin=-0.2, vmax=1.0, caption="NDVI")
maps[1].add_layer(
visual_layer,
)
for m, name in zip(maps, ["NDVI", "Visual"]):
m.add_geojson(feature_collection)
write_info(f"{name}: {satellite} - {date}")
m.to_streamlit()
for col, date in zip(cols, [date_1, date_2]):
esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - pd.to_datetime(date)))
with col:
m = leaf_folium.Map()
m.add_tile_layer(wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri")
m.add_geojson(feature_collection)
write_info(f"Visual Esri Wayback Basemap - {esri_date} (Closest to {date})")
m.to_streamlit()
|