File size: 21,693 Bytes
f3f89d3
b7947a8
f3f89d3
 
 
522f037
f3f89d3
 
 
4466df0
 
f3f89d3
 
 
b7947a8
f3f89d3
 
6e56783
 
b7947a8
 
 
 
 
6e56783
 
 
b7947a8
 
 
 
 
 
 
f3f89d3
b7947a8
 
 
 
 
 
 
 
 
 
 
 
6e56783
9637b47
b7947a8
 
 
9637b47
 
 
 
 
bb7c6c8
b7947a8
bb7c6c8
 
b7947a8
 
bb7c6c8
 
 
 
 
6e56783
bb7c6c8
f3f89d3
6e56783
f3f89d3
 
 
b7947a8
 
 
 
 
 
6e56783
b7947a8
 
 
6e56783
b7947a8
 
 
 
 
6e56783
f3f89d3
 
 
 
 
 
4927297
6e56783
 
4927297
f3f89d3
 
 
6e56783
b7947a8
 
 
6e56783
b7947a8
6e56783
 
 
b7947a8
6e56783
 
 
 
 
 
 
 
 
 
 
b7947a8
98e1101
a3fa426
 
6e56783
 
 
c0d8523
6e56783
6e674da
 
6e56783
 
 
6e674da
bc64de4
85fe8d3
b3172ef
6e56783
 
 
bc64de4
 
6e56783
 
 
a36eb8d
bc64de4
a3fa426
6e56783
a3fa426
6e56783
a3fa426
 
6e56783
 
 
c0d8523
bc64de4
6e56783
 
 
 
 
 
 
a36eb8d
6e56783
 
 
a36eb8d
a3fa426
 
6e56783
a3fa426
 
6e56783
 
b7947a8
 
 
 
 
 
 
 
6e56783
 
 
 
 
 
 
 
 
 
b7947a8
f3f89d3
6e56783
b7947a8
 
d795315
201944c
4466df0
 
 
b7947a8
4466df0
6e56783
b7947a8
 
 
 
 
 
 
 
 
 
 
 
 
 
6e56783
 
b7947a8
5c463e0
 
6e56783
b7947a8
4466df0
 
 
 
b7947a8
 
21b0f34
 
201944c
4466df0
 
201944c
 
f3f89d3
6e56783
f3f89d3
b7947a8
f3f89d3
 
4466df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7947a8
 
4466df0
b7947a8
4466df0
 
 
 
 
 
6e56783
4466df0
 
 
 
b7947a8
 
4466df0
f3f89d3
 
 
 
b7947a8
 
 
 
 
f3f89d3
b7947a8
5c463e0
 
 
 
 
6e56783
 
 
b782672
 
f3f89d3
 
bb7c6c8
 
 
 
 
f3f89d3
622bc33
 
 
 
 
 
 
 
 
04bf9e0
f3f89d3
bb7c6c8
4466df0
6e56783
4466df0
b7947a8
 
6e56783
 
b7947a8
 
 
f3f89d3
6e56783
 
 
 
 
 
 
4466df0
b7947a8
4466df0
b7947a8
 
4990c43
 
0254960
 
 
 
 
6e56783
 
 
 
 
 
 
b7947a8
 
 
6e56783
 
0254960
 
b7947a8
 
 
 
 
6e56783
b7947a8
 
 
6e56783
 
b7947a8
 
 
 
6e56783
 
f3f89d3
b7947a8
 
f3f89d3
4466df0
b7947a8
 
 
 
f3f89d3
4466df0
f3f89d3
 
 
b7947a8
 
 
 
 
6e56783
b7947a8
6e56783
b7947a8
 
 
6e56783
b7947a8
f3f89d3
4466df0
f3f89d3
4466df0
 
 
b7947a8
 
522f037
4466df0
b7947a8
4466df0
b7947a8
4466df0
b7947a8
 
4466df0
b7947a8
 
 
 
 
 
6e56783
b7947a8
 
 
 
6e56783
b7947a8
91f56fd
6e56783
b7947a8
6e56783
 
 
 
b7947a8
 
 
 
 
4466df0
6e56783
 
 
f3f89d3
b7947a8
f3f89d3
b7947a8
f3f89d3
6e56783
 
 
 
 
b7947a8
 
6e56783
f3f89d3
b7947a8
 
 
 
 
f3f89d3
b7947a8
 
6e56783
4466df0
 
 
 
 
 
6e56783
0254960
b7947a8
 
 
 
4466df0
6e56783
 
 
 
5c463e0
 
 
 
 
 
 
 
 
 
6e56783
 
5c463e0
 
6e56783
b7947a8
 
 
 
 
 
f3f89d3
 
4466df0
b7947a8
6e56783
 
b7947a8
 
 
6e56783
 
a3fa426
 
6e56783
 
 
 
bc64de4
6e56783
4990c43
6e56783
f315934
bc64de4
 
6e56783
 
f315934
87b906b
f315934
6e56783
 
bc64de4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import os
from datetime import datetime
import ee
import json
import geemap
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import geopandas as gpd
from shapely.ops import transform
from functools import reduce
import plotly.express as px
import branca.colormap as cm

st.set_page_config(layout="wide")
m = st.markdown(
    """
<style>
div.stButton > button:first-child {
    background-color: #006400;
    color:#ffffff;
}
</style>""",
    unsafe_allow_html=True,
)

# Logo
cols = st.columns([1, 7, 1])
with cols[0]:
    st.image("Final_IITGN-Logo-symmetric-Color.png")
with cols[-1]:
    st.image("IFS.jpg")

# Title
# make title in center
with cols[1]:
    st.markdown(
        f"""
        <h1 style="text-align: center;">Vrinda (वृन्दा): Interactive Vegetation Index Analyzer</h1>
        """,
        unsafe_allow_html=True,
    )

############################################
# Hyperparameters
############################################
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)

st.write("Select the vegetation indices to calculate:")
all_veg_indices = ["NDVI", "EVI", "EVI2"]
formulas = {
    "NDVI": r"$\frac{NIR - Red}{NIR + Red}$",
    "EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$",
    "EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$",
}
defaults = [True, False, False]
veg_indices = []
for veg_index, default in zip(all_veg_indices, defaults):
    if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default):
        veg_indices.append(veg_index)

with st.expander("EVI/EVI2 Parameters"):
    st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)")
    cols = st.columns(5)
    evi_vars = {}
    for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]):
        value = col.number_input(f"{name}", value=default)
        evi_vars[name] = value


############################################
# Functions
############################################
def daterange_str_to_dates(daterange_str):
    start_date, end_date = daterange_str.split("-")
    start_date = pd.to_datetime(start_date)
    end_date = pd.to_datetime(end_date)
    return start_date, end_date


def daterange_dates_to_str(start_date, end_date):
    return f"{start_date.strftime('%Y/%m/%d')}-{end_date.strftime('%Y/%m/%d')}"


def daterange_str_to_year(daterange_str):
    start_date, _ = daterange_str.split("-")
    year = pd.to_datetime(start_date).year
    return year


def shape_3d_to_2d(shape):
    if shape.has_z:
        return transform(lambda x, y, z: (x, y), shape)
    else:
        return shape


def preprocess_gdf(gdf):
    gdf = gdf.to_crs(epsg=7761)  # epsg for Gujarat

    gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
    return gdf


def check_valid_geometry(geometry_gdf):
    geometry = geometry_gdf.geometry.item()
    if geometry.type != "Polygon":
        st.error(f"Selected geometry is of type '{geometry.type}'. Please provide a 'Polygon' geometry.")
        st.stop()


def add_geometry_to_maps(map_list, opacity=0.0):
    for m in map_list:
        m.add_gdf(
            buffer_geometry_gdf,
            layer_name="Geometry Buffer",
            style_function=lambda x: {"color": "red", "fillOpacity": opacity, "fillColor": "red"},
        )
        m.add_gdf(
            geometry_gdf,
            layer_name="Geometry",
            style_function=lambda x: {"color": "blue", "fillOpacity": opacity, "fillColor": "blue"},
        )


def get_dem_slope_maps(buffer_ee_geometry):
    # Create the map for DEM
    dem_map = gee_folium.Map()
    dem_map.add_tile_layer(
        wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri"
    )

    dem_layer = ee.Image("USGS/SRTMGL1_003")
    # Set the target resolution to 10 meters
    target_resolution = 10
    dem_layer = (
        dem_layer.resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution).clip(buffer_ee_geometry)
    )

    # Generate contour lines using elevation thresholds
    terrain = ee.Algorithms.Terrain(dem_layer)
    contour_interval = 1
    contours = (
        terrain.select("elevation").subtract(terrain.select("elevation").mod(contour_interval)).rename("contours")
    )

    # Calculate the minimum and maximum values
    stats = contours.reduceRegion(reducer=ee.Reducer.minMax(), scale=30, maxPixels=1e13)
    max_value = stats.get("contours_max").getInfo()
    min_value = stats.get("contours_min").getInfo()
    vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
    dem_map.addLayer(contours, vis_params, "Contours")
    # Create a colormap
    colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
    dem_map.add_child(colormap)

    # Create the map for Slope
    slope_map = gee_folium.Map()
    slope_map.add_tile_layer(
        wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri"
    )

    # Calculate slope from the DEM
    slope_layer = (
        ee.Terrain.slope(
            ee.Image("USGS/SRTMGL1_003").resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution)
        )
        .clip(buffer_ee_geometry)
        .rename("slope")
    )
    # Calculate the minimum and maximum values
    stats = slope_layer.reduceRegion(reducer=ee.Reducer.minMax(), scale=30, maxPixels=1e13)
    max_value = stats.get("slope_max").getInfo()
    min_value = stats.get("slope_min").getInfo()
    vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
    slope_map.addLayer(slope_layer, vis_params, "Slope Layer")
    # Create a colormap
    colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
    slope_map.add_child(colormap)
    return dem_map, slope_map


def add_indices(image, nir_band, red_band, blue_band):
    # Add negative cloud
    neg_cloud = image.select("MSK_CLDPRB").multiply(-1).rename("Neg_MSK_CLDPRB")
    nir = image.select(nir_band).divide(10000)
    red = image.select(red_band).divide(10000)
    blue = image.select(blue_band).divide(10000)
    numerator = nir.subtract(red)
    ndvi = (numerator).divide(nir.add(red)).rename("NDVI").clamp(-1, 1)
    # EVI formula taken from: https://en.wikipedia.org/wiki/Enhanced_vegetation_index

    denominator = nir.add(red.multiply(evi_vars["C1"])).subtract(blue.multiply(evi_vars["C2"])).add(evi_vars["L"])
    evi = numerator.divide(denominator).multiply(evi_vars["G"]).rename("EVI").clamp(-1, 1)
    evi2 = (
        numerator.divide(nir.add(evi_vars["L"]).add(red.multiply(evi_vars["C"])))
        .multiply(evi_vars["G"])
        .rename("EVI2")
        .clamp(-1, 1)
    )
    return image.addBands([neg_cloud, ndvi, evi, evi2])


def process_date(daterange, satellite, veg_indices):
    start_date, end_date = daterange
    daterange_str = daterange_dates_to_str(start_date, end_date)
    prefix = f"Processing {satellite} - {daterange_str}"
    try:
        attrs = satellites[satellite]
        collection = attrs["collection"]
        collection = collection.filterBounds(buffer_ee_geometry)
        collection = collection.filterDate(start_date, end_date)

        bucket = {}
        for veg_index in veg_indices:
            mosaic_veg_index = collection.qualityMosaic(veg_index)
            fc = geemap.zonal_stats(
                mosaic_veg_index, ee_feature_collection, scale=attrs["scale"], return_fc=True
            ).getInfo()
            mean_veg_index = fc["features"][0]["properties"][veg_index]
            bucket[veg_index] = mean_veg_index
            fc = geemap.zonal_stats(
                mosaic_veg_index, buffer_ee_feature_collection, scale=attrs["scale"], return_fc=True
            ).getInfo()
            buffer_mean_veg_index = fc["features"][0]["properties"][veg_index]
            bucket[f"{veg_index}_buffer"] = buffer_mean_veg_index
            bucket[f"{veg_index}_ratio"] = mean_veg_index / buffer_mean_veg_index
            bucket[f"mosaic_{veg_index}"] = mosaic_veg_index

        # Get median mosaic
        bucket["mosaic_visual_max_ndvi"] = collection.qualityMosaic("NDVI")
        bucket["mosaic_visual_median"] = collection.median()
        bucket["image_visual_least_cloud"] = collection.sort("CLOUDY_PIXEL_PERCENTAGE").first()

        if satellite == "COPERNICUS/S2_SR_HARMONIZED":
            cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100
        else:
            cloud_mask_probability = None
        bucket["Cloud (0 to 1)"] = cloud_mask_probability
        result_df.loc[daterange_str, list(bucket.keys())] = list(bucket.values())
        count = collection.size().getInfo()
        suffix = f" - Processed {count} images"
        write_info(f"{prefix}{suffix}")
    except Exception as e:
        print(e)
        suffix = f" - Imagery not available"
        write_info(f"{prefix}{suffix}")


def write_info(info):
    st.write(f"<span style='color:#006400;'>{info}</span>", unsafe_allow_html=True)


############################################
# One time setup
############################################


def one_time_setup():
    credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
    if os.path.exists(credentials_path):
        pass  # Earth Engine credentials already exist
    elif "EE" in os.environ:  # write the credentials to the file
        ee_credentials = os.environ.get("EE")
        os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
        with open(credentials_path, "w") as f:
            f.write(ee_credentials)
    else:
        raise ValueError(
            f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
        )

    ee.Initialize()

    satellites = {
        "COPERNICUS/S2_SR_HARMONIZED": {
            "scale": 10,
            "collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
            .select(
                ["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"],
                ["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"],
            )
            .map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue")),
        },
    }
    st.session_state.satellites = satellites
    with open("wayback_imagery.json") as f:
        st.session_state.wayback_mapping = json.load(f)


if "one_time_setup_done" not in st.session_state:
    one_time_setup()
    st.session_state.one_time_setup_done = True

satellites = st.session_state.satellites
wayback_mapping = st.session_state.wayback_mapping

############################################
# App
############################################

# Input: Satellite Sources
st.write("Select the satellite sources:")
satellite_selected = {}
for satellite in satellites:
    satellite_selected[satellite] = st.checkbox(satellite, value=True, disabled=True)

# Date range input
max_year = datetime.now().year
jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d")
dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d")
nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
input_daterange = st.date_input(
    "Date Range (Ignore year. App will compute indices for all possible years)", (nov_15, dec_15), jan_1, dec_31
)
min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1))
max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1))

# Input: GeoJSON/KML file
file_url = st.query_params.get("file_url", None)
if file_url is None:
    file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml", "shp"])

if file_url is None:
    st.stop()

if isinstance(file_url, str):
    if file_url.startswith("https://drive.google.com/file/d/"):
        ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
        file_url = f"https://drive.google.com/uc?id={ID}"
    elif file_url.startswith("https://drive.google.com/open?id="):
        ID = file_url.replace("https://drive.google.com/open?id=", "")
        file_url = f"https://drive.google.com/uc?id={ID}"

buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1)

input_gdf = preprocess_gdf(gpd.read_file(file_url))


# Input: Geometry
def format_fn(x):
    return input_gdf.drop(columns=["geometry"]).loc[x].to_dict()


input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
geometry_gdf = input_gdf[input_gdf.index == input_geometry_idx]
check_valid_geometry(geometry_gdf)

outer_geometry_gdf = geometry_gdf.copy()
outer_geometry_gdf["geometry"] = outer_geometry_gdf["geometry"].buffer(buffer)
buffer_geometry_gdf = (
    outer_geometry_gdf.difference(geometry_gdf).reset_index().drop(columns="index")
)  # reset index forces GeoSeries to GeoDataFrame
buffer_geometry_gdf["Name"] = "Buffer"

# Derived Inputs
ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
ee_feature_collection = ee.FeatureCollection(ee_geometry)
buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)
outer_ee_geometry = ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
outer_ee_feature_collection = ee.FeatureCollection(outer_ee_geometry)

# visualize the geometry
m = leaf_folium.Map()
keys = list(wayback_mapping.keys())
latest_date = sorted(keys, key=lambda x: pd.to_datetime(x))[-1]
m.add_tile_layer(
    wayback_mapping[latest_date], name=f"Esri Wayback - {latest_date.replace('-', '/')}", attribution="Esri"
)
# m.add_layer(buffer_ee_feature_collection)
add_geometry_to_maps([m], opacity=0.3)
write_info(
    f"""
<div style="text-align: center;">
    Latest Esri Imagery - {latest_date.replace('-', '/')}
</div>
"""
)
m.to_streamlit()

# Generate stats
stats_df = pd.DataFrame(
    {
        "Area (m^2)": geometry_gdf.area.item(),
        "Perimeter (m)": geometry_gdf.length.item(),
        "Points": json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"],
    }
)
st.write("<h3><div style='text-align: center;'>Geometry Metrics</div></h3>", unsafe_allow_html=True)
st.markdown(
    f"""| Metric | Value |
| --- | --- |
| Area (m^2) | {stats_df['Area (m^2)'].item():.2f} m^2 = {stats_df['Area (m^2)'].item()/10000:.2f} ha |
| Perimeter (m) | {stats_df['Perimeter (m)'].item():.2f} m |
| Points | {stats_df['Points'][0]} |
"""
)

stats_csv = stats_df.to_csv(index=False)
st.download_button("Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True)

# Submit
submit = st.button("Calculate Vegetation Indices", use_container_width=True)

st.write("<h2><div style='text-align: center;'>Results</div></h2>", unsafe_allow_html=True)

if submit:
    if not any(satellite_selected.values()):
        st.error("Please select at least one satellite source")
        st.stop()

    # Create range
    start_day = input_daterange[0].day
    start_month = input_daterange[0].month
    end_day = input_daterange[1].day
    end_month = input_daterange[1].month

    dates = []
    for year in range(min_year, max_year + 1):
        start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}")
        end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}")
        dates.append((start_date, end_date))

    result_df = pd.DataFrame()
    for satellite, attrs in satellites.items():
        if not satellite_selected[satellite]:
            continue

        with st.spinner(f"Processing {satellite} ..."):
            progress_bar = st.progress(0)
            for i, daterange in enumerate(dates):
                process_date(daterange, satellite, veg_indices)
                progress_bar.progress((i + 1) / len(dates))

    st.session_state.result = result_df

print("Printing result...")
if "result" in st.session_state:
    result_df = st.session_state.result
    print(result_df.columns)

    # drop rows with all NaN values
    result_df = result_df.dropna(how="all")
    # drop columns with all NaN values
    result_df = result_df.dropna(axis=1, how="all")
    print(result_df.columns)
    print(result_df.head(2))

    # df.reset_index(inplace=True)
    # df.index = pd.to_datetime(df["index"], format="%Y-%m")
    for column in result_df.columns:
        result_df[column] = pd.to_numeric(result_df[column], errors="ignore")

    df_numeric = result_df.select_dtypes(include=["float64"])
    st.write(df_numeric)

    df_numeric_csv = df_numeric.to_csv(index=True)
    st.download_button(
        "Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True
    )

    df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index]
    for veg_index in veg_indices:
        fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer"], markers=True)
        fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index))
        st.plotly_chart(fig)

    st.write(
        "<h3><div style='text-align: center;'>Visual Comparison between Two Years</div></h3>", unsafe_allow_html=True
    )
    cols = st.columns(2)

    with cols[0]:
        year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x))
    with cols[1]:
        year_2 = st.selectbox(
            "Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x)
        )

    vis_params = {"min": 0, "max": 1, "palette": ["white", "green"]}  # Example visualisation for Sentinel-2

    # Create a colormap and name it as NDVI
    colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])

    for veg_index in veg_indices:
        st.write(f"<h3><div style='text-align: center;'>{veg_index}</div></h3>", unsafe_allow_html=True)
        cols = st.columns(2)
        for col, daterange_str in zip(cols, [year_1, year_2]):
            mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"]
            with col:
                m = gee_folium.Map()
                veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1})

                if satellite == "COPERNICUS/S2_SR_HARMONIZED":
                    min_all = 0
                    max_all = 255
                else:
                    raise ValueError(f"Unknown satellite: {satellite}")

                m.add_layer(mosaic.select(veg_index), vis_params)
                # add colorbar
                # m.add_colorbar(colors=["#000000", "#00FF00"], vmin=0.0, vmax=1.0)
                add_geometry_to_maps([m])
                m.add_child(colormap)
                m.to_streamlit()

    for name, key in zip(
        ["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)", "RGB (Median Mosaic)"],
        ["image_visual_least_cloud", "mosaic_visual_max_ndvi", "mosaic_visual_median"],
    ):
        st.write(f"<h3><div style='text-align: center;'>{name}</div></h3>", unsafe_allow_html=True)
        cols = st.columns(2)
        for col, daterange_str in zip(cols, [year_1, year_2]):
            start_date, end_date = daterange_str_to_dates(daterange_str)
            mid_date = start_date + (end_date - start_date) / 2
            esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
            with col:
                m = gee_folium.Map()
                visual_mosaic = result_df.loc[daterange_str, key]
                # visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all})

                m.add_layer(visual_mosaic.select(["R", "G", "B"]))
                add_geometry_to_maps([m])
                m.to_streamlit()

    st.write("<h3><div style='text-align: center;'>Esri RGB Imagery</div></h3>", unsafe_allow_html=True)
    cols = st.columns(2)
    for col, daterange_str in zip(cols, [year_1, year_2]):
        start_date, end_date = daterange_str_to_dates(daterange_str)
        mid_date = start_date + (end_date - start_date) / 2
        esri_date = min(wayback_mapping.keys(), key=lambda x: abs(pd.to_datetime(x) - mid_date))
        with col:
            m = leaf_folium.Map()
            m.add_tile_layer(wayback_mapping[esri_date], name=f"Esri Wayback Imagery - {esri_date}", attribution="Esri")
            add_geometry_to_maps([m])
            write_info(
                f"""
            <div style="text-align: center;">
                Esri Imagery - {esri_date.replace('-', '/')}
            </div>
            """
            )
            m.to_streamlit()

    st.write(
        "<h3><div style='text-align: center;'>DEM and Slope from SRTM at 30m resolution</div></h3>",
        unsafe_allow_html=True,
    )
    cols = st.columns(2)
    dem_map, slope_map = get_dem_slope_maps(
        ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
    )
    for col, param_map, title in zip(cols, [dem_map, slope_map], ["DEM Map", "Slope Map"]):
        with col:
            add_geometry_to_maps([param_map])
            write_info(
                f"""
            <div style="text-align: center;">
                {title}
            </div>
            """
            )
            param_map.to_streamlit()