|
import json |
|
from pathlib import Path |
|
from typing import List, Tuple, Union |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
import nota_wav2lip.audio as audio |
|
from config import hparams as hp |
|
|
|
|
|
class VideoSlicer: |
|
def __init__(self, frame_dir: Union[Path, str], bbox_path: Union[Path, str]): |
|
self.fps = hp.face.video_fps |
|
self.frame_dir = frame_dir |
|
self.frame_path_list = sorted(Path(self.frame_dir).glob("*.jpg")) |
|
self.frame_array_list: List[np.ndarray] = [cv2.imread(str(image)) for image in self.frame_path_list] |
|
|
|
with open(bbox_path, 'r') as f: |
|
metadata = json.load(f) |
|
self.bbox: List[List[int]] = [metadata['bbox'][key] for key in sorted(metadata['bbox'].keys())] |
|
self.bbox_format = metadata['format'] |
|
assert len(self.bbox) == len(self.frame_array_list) |
|
|
|
def __len__(self): |
|
return len(self.frame_array_list) |
|
|
|
def __getitem__(self, idx) -> Tuple[np.ndarray, List[int]]: |
|
bbox = self.bbox[idx] |
|
frame_original: np.ndarray = self.frame_array_list[idx] |
|
|
|
return frame_original, bbox |
|
|
|
|
|
class AudioSlicer: |
|
def __init__(self, audio_path: Union[Path, str]): |
|
self.fps = hp.face.video_fps |
|
self.mel_chunks = self._audio_chunk_generator(audio_path) |
|
self._audio_path = audio_path |
|
|
|
@property |
|
def audio_path(self): |
|
return self._audio_path |
|
|
|
def __len__(self): |
|
return len(self.mel_chunks) |
|
|
|
def _audio_chunk_generator(self, audio_path): |
|
wav: np.ndarray = audio.load_wav(audio_path, hp.audio.sample_rate) |
|
mel: np.ndarray = audio.melspectrogram(wav) |
|
|
|
if np.isnan(mel.reshape(-1)).sum() > 0: |
|
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') |
|
|
|
mel_chunks: List[np.ndarray] = [] |
|
mel_idx_multiplier = 80. / self.fps |
|
|
|
i = 0 |
|
while True: |
|
start_idx = int(i * mel_idx_multiplier) |
|
if start_idx + hp.face.mel_step_size > len(mel[0]): |
|
mel_chunks.append(mel[:, len(mel[0]) - hp.face.mel_step_size:]) |
|
return mel_chunks |
|
mel_chunks.append(mel[:, start_idx: start_idx + hp.face.mel_step_size]) |
|
i += 1 |
|
|
|
def __getitem__(self, idx: int) -> np.ndarray: |
|
return self.mel_chunks[idx] |
|
|