|
import torch |
|
from torch import nn |
|
|
|
from nota_wav2lip.models.base import Wav2LipBase |
|
from nota_wav2lip.models.conv import Conv2d, Conv2dTranspose |
|
|
|
|
|
class Wav2Lip(Wav2LipBase): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.face_encoder_blocks = nn.ModuleList([ |
|
nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)), |
|
|
|
nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)), |
|
|
|
nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)), |
|
|
|
nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)), |
|
|
|
nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)), |
|
|
|
nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),), |
|
|
|
nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0), |
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),]) |
|
|
|
self.audio_encoder = nn.Sequential( |
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), |
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0), |
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),) |
|
|
|
self.face_decoder_blocks = nn.ModuleList([ |
|
nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0),), |
|
|
|
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),), |
|
|
|
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),), |
|
|
|
nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),), |
|
|
|
nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),), |
|
|
|
nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),), |
|
|
|
nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), |
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),),]) |
|
|
|
self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1), |
|
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0), |
|
nn.Sigmoid()) |
|
|