Spaces:
Sleeping
Sleeping
Dan Mo
commited on
Commit
·
e02eeb5
1
Parent(s):
1e5cb1c
Implement Gradio interface for emoji mashup based on sentence input
Browse files
app.py
CHANGED
@@ -1,7 +1,77 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import numpy as np
|
5 |
+
import requests
|
6 |
+
from PIL import Image
|
7 |
+
from io import BytesIO
|
8 |
|
9 |
+
# Load model
|
10 |
+
model = SentenceTransformer('all-mpnet-base-v2')
|
11 |
|
12 |
+
# Load emoji dictionaries
|
13 |
+
def kitchen_txt_to_dict(filepath):
|
14 |
+
emoji_dict = {}
|
15 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
16 |
+
for line in f:
|
17 |
+
parts = line.strip().split(' ', 1)
|
18 |
+
if len(parts) == 2:
|
19 |
+
emoji, desc = parts
|
20 |
+
emoji_dict[emoji] = desc
|
21 |
+
return emoji_dict
|
22 |
+
|
23 |
+
emotion_dict = kitchen_txt_to_dict('/content/drive/MyDrive/google emoji/google-emoji-kitchen-emotion.txt')
|
24 |
+
event_dict = kitchen_txt_to_dict('/content/drive/MyDrive/google emoji/google-emoji-kitchen-item.txt')
|
25 |
+
|
26 |
+
# Precompute embeddings
|
27 |
+
emotion_embeddings = {emoji: model.encode(desc) for emoji, desc in emotion_dict.items()}
|
28 |
+
event_embeddings = {emoji: model.encode(desc) for emoji, desc in event_dict.items()}
|
29 |
+
|
30 |
+
# Helper functions
|
31 |
+
def find_top_emojis(embedding, emoji_embeddings, top_n=1):
|
32 |
+
similarities = [
|
33 |
+
(emoji, cosine_similarity([embedding], [e_embed])[0][0])
|
34 |
+
for emoji, e_embed in emoji_embeddings.items()
|
35 |
+
]
|
36 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
37 |
+
return [emoji for emoji, _ in similarities[:top_n]]
|
38 |
+
|
39 |
+
def get_emoji_kitchen_url(emoji1, emoji2, size=256):
|
40 |
+
return f"https://emojik.vercel.app/s/{emoji1}_{emoji2}?size={size}"
|
41 |
+
|
42 |
+
def fetch_image(url):
|
43 |
+
try:
|
44 |
+
response = requests.get(url)
|
45 |
+
if response.status_code == 200 and "image" in response.headers.get("Content-Type", ""):
|
46 |
+
return Image.open(BytesIO(response.content))
|
47 |
+
else:
|
48 |
+
return None
|
49 |
+
except:
|
50 |
+
return None
|
51 |
+
|
52 |
+
# Main function for Gradio
|
53 |
+
def sentence_to_emojis(sentence):
|
54 |
+
embedding = model.encode(sentence)
|
55 |
+
|
56 |
+
top_emotion = find_top_emojis(embedding, emotion_embeddings, top_n=1)[0]
|
57 |
+
top_event = find_top_emojis(embedding, event_embeddings, top_n=1)[0]
|
58 |
+
|
59 |
+
mashup_url = get_emoji_kitchen_url(top_emotion, top_event)
|
60 |
+
mashup_image = fetch_image(mashup_url)
|
61 |
+
|
62 |
+
return top_emotion, top_event, mashup_image
|
63 |
+
|
64 |
+
# Gradio interface
|
65 |
+
demo = gr.Interface(
|
66 |
+
fn=sentence_to_emojis,
|
67 |
+
inputs=gr.Textbox(lines=2, placeholder="Type a sentence..."),
|
68 |
+
outputs=[
|
69 |
+
gr.Text(label="Top Emotion Emoji"),
|
70 |
+
gr.Text(label="Top Event Emoji"),
|
71 |
+
gr.Image(label=" Kitchen Emoji")
|
72 |
+
],
|
73 |
+
title="Sentence → Emoji Mashup",
|
74 |
+
description="Get the top emotion and event emoji from your sentence, and view the mashup!"
|
75 |
+
)
|
76 |
+
|
77 |
+
demo.launch(share=True)
|