SuperBigtoo commited on
Commit
93acf27
·
1 Parent(s): 99819ca

adding model thai_news_classify

Browse files
bert/LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
bert/README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # BERT-th
3
+
4
+ Google's [**BERT**](https://github.com/google-research/bert) is currently the state-of-the-art method of pre-training text representations which additionally provides multilingual models. ~~Unfortunately, Thai is the only one in 103 languages that is excluded due to difficulties in word segmentation.~~
5
+
6
+ BERT-th presents the Thai-only pre-trained model based on the BERT-Base structure. It is now available to download.
7
+ * **[`BERT-Base, Thai`](https://drive.google.com/open?id=1J3uuXZr_Se_XIFHj7zlTJ-C9wzI9W_ot)**: BERT-Base architecture, Thai-only model
8
+
9
+ BERT-th also includes relevant codes and scripts along with the pre-trained model, all of which are the modified versions of those in the original BERT project.
10
+
11
+ ## Preprocessing
12
+
13
+ ### Data Source
14
+
15
+ Training data for BERT-th come from [the latest article dump of Thai Wikipedia](https://dumps.wikimedia.org/thwiki/latest/thwiki-latest-pages-articles.xml.bz2) on November 2, 2018. The raw texts are extracted by using [WikiExtractor](https://github.com/attardi/wikiextractor).
16
+
17
+ ### Sentence Segmentation
18
+
19
+ Input data need to be segmented into separate sentences before further processing by BERT modules. Since Thai language has no explicit marker at the end of a sentence, it is quite problematic to pinpoint sentence boundaries. To the best of our knowledge, there is still no implementation of Thai sentence segmentation elsewhere. So, in this project, sentence segmentation is done by applying simple heuristics, considering spaces, sentence length and common conjunctions.
20
+
21
+ After preprocessing, the training corpus consists of approximately 2 million sentences and 40 million words (counting words after word segmentation by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)). The plain and segmented texts can be downloaded **[`here`](https://drive.google.com/file/d/1QZSOpikO6Qc02gRmyeb_UiRLtTmUwGz1/view?usp=sharing)**.
22
+
23
+ ## Tokenization
24
+
25
+ BERT uses [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) as a tokenization mechanism. But it is Google internal, we cannot apply existing Thai word segmentation and then utilize WordPiece to learn the set of subword units. The best alternative is [SentencePiece](https://github.com/google/sentencepiece) which implements [BPE](https://arxiv.org/abs/1508.07909) and needs no word segmentation.
26
+
27
+ In this project, we adopt a pre-trained Thai SentencePiece model from [BPEmb](https://github.com/bheinzerling/bpemb). The model of 25000 vocabularies is chosen and the vocabulary file has to be augmented with BERT's special characters, including '[PAD]', '[CLS]', '[SEP]' and '[MASK]'. The model and vocabulary files can be downloaded **[`here`](https://drive.google.com/file/d/1F7pCgt3vPlarI9RxKtOZUrC_67KMNQ1W/view?usp=sharing)**.
28
+
29
+ `SentencePiece` and `bpe_helper.py` from BPEmb are both used to tokenize data. `ThaiTokenizer class` has been added to BERT's `tokenization.py` for tokenizing Thai texts.
30
+
31
+ ## Pre-training
32
+
33
+ The data can be prepared before pre-training by using this script.
34
+
35
+ ```shell
36
+ export BPE_DIR=/path/to/bpe
37
+ export TEXT_DIR=/path/to/text
38
+ export DATA_DIR=/path/to/data
39
+
40
+ python create_pretraining_data.py \
41
+ --input_file=$TEXT_DIR/thaiwikitext_sentseg \
42
+ --output_file=$DATA_DIR/tf_examples.tfrecord \
43
+ --vocab_file=$BPE_DIR/th.wiki.bpe.op25000.vocab \
44
+ --max_seq_length=128 \
45
+ --max_predictions_per_seq=20 \
46
+ --masked_lm_prob=0.15 \
47
+ --random_seed=12345 \
48
+ --dupe_factor=5 \
49
+ --thai_text=True \
50
+ --spm_file=$BPE_DIR/th.wiki.bpe.op25000.model
51
+ ```
52
+
53
+ Then, the following script can be run to learn a model from scratch.
54
+
55
+ ```shell
56
+ export DATA_DIR=/path/to/data
57
+ export BERT_BASE_DIR=/path/to/bert_base
58
+
59
+ python run_pretraining.py \
60
+ --input_file=$DATA_DIR/tf_examples.tfrecord \
61
+ --output_dir=$BERT_BASE_DIR \
62
+ --do_train=True \
63
+ --do_eval=True \
64
+ --bert_config_file=$BERT_BASE_DIR/bert_config.json \
65
+ --train_batch_size=32 \
66
+ --max_seq_length=128 \
67
+ --max_predictions_per_seq=20 \
68
+ --num_train_steps=1000000 \
69
+ --num_warmup_steps=100000 \
70
+ --learning_rate=1e-4 \
71
+ --save_checkpoints_steps=200000
72
+ ```
73
+
74
+ We have trained the model for 1 million steps. On Tesla K80 GPU, it took around 20 days to complete. Though, we provide a snapshot at 0.8 million steps because it yields better results for downstream classification tasks.
75
+
76
+ ## Downstream Classification Tasks
77
+
78
+ ### XNLI
79
+
80
+ [XNLI](http://www.nyu.edu/projects/bowman/xnli/) is a dataset for evaluating a cross-lingual inferential classification task. The development and test sets contain 15 languages which data are thoroughly edited. The machine-translated versions of training data are also provided.
81
+
82
+ The Thai-only pre-trained BERT model can be applied to the XNLI task by using training data which are translated to Thai. Spaces between words in the training data need to be removed to make them consistent with inputs in the pre-training step. The processed files of XNLI related to Thai language can be downloaded **[`here`](https://drive.google.com/file/d/1ZAk1JfR6a0TSCkeyQ-EkRtk1w_mQDWFG/view?usp=sharing)**.
83
+
84
+ Afterwards, the XNLI task can be learned by using this script.
85
+
86
+ ```shell
87
+ export BPE_DIR=/path/to/bpe
88
+ export XNLI_DIR=/path/to/xnli
89
+ export OUTPUT_DIR=/path/to/output
90
+ export BERT_BASE_DIR=/path/to/bert_base
91
+
92
+ python run_classifier.py \
93
+ --task_name=XNLI \
94
+ --do_train=true \
95
+ --do_eval=true \
96
+ --data_dir=$XNLI_DIR \
97
+ --vocab_file=$BPE_DIR/th.wiki.bpe.op25000.vocab \
98
+ --bert_config_file=$BERT_BASE_DIR/bert_config.json \
99
+ --init_checkpoint=$BERT_BASE_DIR/model.ckpt \
100
+ --max_seq_length=128 \
101
+ --train_batch_size=32 \
102
+ --learning_rate=5e-5 \
103
+ --num_train_epochs=2.0 \
104
+ --output_dir=$OUTPUT_DIR \
105
+ --xnli_language=th \
106
+ --spm_file=$BPE_DIR/th.wiki.bpe.op25000.model
107
+ ```
108
+
109
+ This table compares the Thai-only model with XNLI baselines and the Multilingual Cased model which is also trained by using translated data.
110
+
111
+ <!-- Use html table because github markdown doesn't support colspan -->
112
+ <table>
113
+ <tr>
114
+ <td colspan="2" align="center"><b>XNLI Baseline</b></td>
115
+ <td colspan="2" align="center"><b>BERT</b></td>
116
+ </tr>
117
+ <tr>
118
+ <td align="center">Translate Train</td>
119
+ <td align="center">Translate Test</td>
120
+ <td align="center">Multilingual Model</td>
121
+ <td align="center">Thai-only Model</td>
122
+ </tr>
123
+ <td align="center">62.8</td>
124
+ <td align="center">64.4</td>
125
+ <td align="center">66.1</td>
126
+ <td align="center"><b>68.9</b></td>
127
+ </table>
128
+
129
+ ### Wongnai Review Dataset
130
+
131
+ Wongnai Review Dataset collects restaurant reviews and ratings from [Wongnai](https://www.wongnai.com/) website. The task is to classify a review into one of five ratings (1 to 5 stars). The dataset can be downloaded **[`here`](https://github.com/wongnai/wongnai-corpus)** and the following script can be run to use the Thai-only model for this task.
132
+
133
+ ```shell
134
+ export BPE_DIR=/path/to/bpe
135
+ export WONGNAI_DIR=/path/to/wongnai
136
+ export OUTPUT_DIR=/path/to/output
137
+ export BERT_BASE_DIR=/path/to/bert_base
138
+
139
+ python run_classifier.py \
140
+ --task_name=wongnai \
141
+ --do_train=true \
142
+ --do_predict=true \
143
+ --data_dir=$WONGNAI_DIR \
144
+ --vocab_file=$BPE_DIR/th.wiki.bpe.op25000.vocab \
145
+ --bert_config_file=$BERT_BASE_DIR/bert_config.json \
146
+ --init_checkpoint=$BERT_BASE_DIR/model.ckpt \
147
+ --max_seq_length=128 \
148
+ --train_batch_size=32 \
149
+ --learning_rate=5e-5 \
150
+ --num_train_epochs=2.0 \
151
+ --output_dir=$OUTPUT_DIR \
152
+ --spm_file=$BPE_DIR/th.wiki.bpe.op25000.model
153
+ ```
154
+
155
+ Without additional preprocessing and further fine-tuning, the Thai-only BERT model can achieve 0.56612 and 0.57057 for public and private test-set scores respectively.
bert/__pycache__/bpe_helper.cpython-311.pyc ADDED
Binary file (4.15 kB). View file
 
bert/bpe_helper.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from math import log
2
+
3
+
4
+ class BPE(object):
5
+
6
+ def __init__(self, vocab_file):
7
+ with open(vocab_file, encoding="utf8") as f:
8
+ self.words = [l.split()[0] for l in f]
9
+ log_len = log(len(self.words))
10
+ self.wordcost = {
11
+ k: log((i+1) * log_len)
12
+ for i, k in enumerate(self.words)}
13
+ self.maxword = max(len(x) for x in self.words)
14
+
15
+ def encode(self, s):
16
+ """Uses dynamic programming to infer the location of spaces in a string
17
+ without spaces."""
18
+
19
+ s = s.replace(" ", "▁")
20
+
21
+ # Find the best match for the i first characters, assuming cost has
22
+ # been built for the i-1 first characters.
23
+ # Returns a pair (match_cost, match_length).
24
+ def best_match(i):
25
+ candidates = enumerate(reversed(cost[max(0, i - self.maxword):i]))
26
+ return min(
27
+ (c + self.wordcost.get(s[i-k-1:i], 9e999), k+1)
28
+ for k, c in candidates)
29
+
30
+ # Build the cost array.
31
+ cost = [0]
32
+ for i in range(1, len(s) + 1):
33
+ c, k = best_match(i)
34
+ cost.append(c)
35
+
36
+ # Backtrack to recover the minimal-cost string.
37
+ out = []
38
+ i = len(s)
39
+ while i > 0:
40
+ c, k = best_match(i)
41
+ assert c == cost[i]
42
+ out.append(s[i-k:i])
43
+
44
+ i -= k
45
+
46
+ return " ".join(reversed(out))
47
+
48
+
49
+ if __name__ == "__main__":
50
+ bpe = BPE("en.wiki.bpe.op25000.vocab")
51
+ print(bpe.encode(' this is our house in boomchakalaka'))
52
+ # >>> ▁this ▁is ▁our ▁house ▁in ▁boom ch ak al aka
bert/create_pretraining_data.py ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Create masked LM/next sentence masked_lm TF examples for BERT."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import collections
22
+ import random
23
+
24
+ import tokenization
25
+ import tensorflow as tf
26
+
27
+ flags = tf.flags
28
+
29
+ FLAGS = flags.FLAGS
30
+
31
+ flags.DEFINE_string("input_file", None,
32
+ "Input raw text file (or comma-separated list of files).")
33
+
34
+ flags.DEFINE_string(
35
+ "output_file", None,
36
+ "Output TF example file (or comma-separated list of files).")
37
+
38
+ flags.DEFINE_string("vocab_file", None,
39
+ "The vocabulary file that the BERT model was trained on.")
40
+
41
+ flags.DEFINE_bool(
42
+ "do_lower_case", True,
43
+ "Whether to lower case the input text. Should be True for uncased "
44
+ "models and False for cased models.")
45
+
46
+ flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.")
47
+
48
+ flags.DEFINE_integer("max_predictions_per_seq", 20,
49
+ "Maximum number of masked LM predictions per sequence.")
50
+
51
+ flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.")
52
+
53
+ flags.DEFINE_integer(
54
+ "dupe_factor", 10,
55
+ "Number of times to duplicate the input data (with different masks).")
56
+
57
+ flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")
58
+
59
+ flags.DEFINE_float(
60
+ "short_seq_prob", 0.1,
61
+ "Probability of creating sequences which are shorter than the "
62
+ "maximum length.")
63
+
64
+ flags.DEFINE_bool(
65
+ "thai_text", False,
66
+ "Whether to process Thai language.")
67
+
68
+ flags.DEFINE_string(
69
+ "spm_file", None,
70
+ "SentencePiece model file for Thai language.")
71
+
72
+
73
+ class TrainingInstance(object):
74
+ """A single training instance (sentence pair)."""
75
+
76
+ def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels,
77
+ is_random_next):
78
+ self.tokens = tokens
79
+ self.segment_ids = segment_ids
80
+ self.is_random_next = is_random_next
81
+ self.masked_lm_positions = masked_lm_positions
82
+ self.masked_lm_labels = masked_lm_labels
83
+
84
+ def __str__(self):
85
+ s = ""
86
+ s += "tokens: %s\n" % (" ".join(
87
+ [tokenization.printable_text(x) for x in self.tokens]))
88
+ s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids]))
89
+ s += "is_random_next: %s\n" % self.is_random_next
90
+ s += "masked_lm_positions: %s\n" % (" ".join(
91
+ [str(x) for x in self.masked_lm_positions]))
92
+ s += "masked_lm_labels: %s\n" % (" ".join(
93
+ [tokenization.printable_text(x) for x in self.masked_lm_labels]))
94
+ s += "\n"
95
+ return s
96
+
97
+ def __repr__(self):
98
+ return self.__str__()
99
+
100
+
101
+ def write_instance_to_example_files(instances, tokenizer, max_seq_length,
102
+ max_predictions_per_seq, output_files):
103
+ """Create TF example files from `TrainingInstance`s."""
104
+ writers = []
105
+ for output_file in output_files:
106
+ writers.append(tf.python_io.TFRecordWriter(output_file))
107
+
108
+ writer_index = 0
109
+
110
+ total_written = 0
111
+ for (inst_index, instance) in enumerate(instances):
112
+ input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
113
+ input_mask = [1] * len(input_ids)
114
+ segment_ids = list(instance.segment_ids)
115
+ assert len(input_ids) <= max_seq_length
116
+
117
+ while len(input_ids) < max_seq_length:
118
+ input_ids.append(0)
119
+ input_mask.append(0)
120
+ segment_ids.append(0)
121
+
122
+ assert len(input_ids) == max_seq_length
123
+ assert len(input_mask) == max_seq_length
124
+ assert len(segment_ids) == max_seq_length
125
+
126
+ masked_lm_positions = list(instance.masked_lm_positions)
127
+ masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
128
+ masked_lm_weights = [1.0] * len(masked_lm_ids)
129
+
130
+ while len(masked_lm_positions) < max_predictions_per_seq:
131
+ masked_lm_positions.append(0)
132
+ masked_lm_ids.append(0)
133
+ masked_lm_weights.append(0.0)
134
+
135
+ next_sentence_label = 1 if instance.is_random_next else 0
136
+
137
+ features = collections.OrderedDict()
138
+ features["input_ids"] = create_int_feature(input_ids)
139
+ features["input_mask"] = create_int_feature(input_mask)
140
+ features["segment_ids"] = create_int_feature(segment_ids)
141
+ features["masked_lm_positions"] = create_int_feature(masked_lm_positions)
142
+ features["masked_lm_ids"] = create_int_feature(masked_lm_ids)
143
+ features["masked_lm_weights"] = create_float_feature(masked_lm_weights)
144
+ features["next_sentence_labels"] = create_int_feature([next_sentence_label])
145
+
146
+ tf_example = tf.train.Example(features=tf.train.Features(feature=features))
147
+
148
+ writers[writer_index].write(tf_example.SerializeToString())
149
+ writer_index = (writer_index + 1) % len(writers)
150
+
151
+ total_written += 1
152
+
153
+ if inst_index < 20:
154
+ tf.logging.info("*** Example ***")
155
+ tf.logging.info("tokens: %s" % " ".join(
156
+ [tokenization.printable_text(x) for x in instance.tokens]))
157
+
158
+ for feature_name in features.keys():
159
+ feature = features[feature_name]
160
+ values = []
161
+ if feature.int64_list.value:
162
+ values = feature.int64_list.value
163
+ elif feature.float_list.value:
164
+ values = feature.float_list.value
165
+ tf.logging.info(
166
+ "%s: %s" % (feature_name, " ".join([str(x) for x in values])))
167
+
168
+ for writer in writers:
169
+ writer.close()
170
+
171
+ tf.logging.info("Wrote %d total instances", total_written)
172
+
173
+
174
+ def create_int_feature(values):
175
+ feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
176
+ return feature
177
+
178
+
179
+ def create_float_feature(values):
180
+ feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
181
+ return feature
182
+
183
+
184
+ def create_training_instances(input_files, tokenizer, max_seq_length,
185
+ dupe_factor, short_seq_prob, masked_lm_prob,
186
+ max_predictions_per_seq, rng):
187
+ """Create `TrainingInstance`s from raw text."""
188
+ all_documents = [[]]
189
+
190
+ # Input file format:
191
+ # (1) One sentence per line. These should ideally be actual sentences, not
192
+ # entire paragraphs or arbitrary spans of text. (Because we use the
193
+ # sentence boundaries for the "next sentence prediction" task).
194
+ # (2) Blank lines between documents. Document boundaries are needed so
195
+ # that the "next sentence prediction" task doesn't span between documents.
196
+ for input_file in input_files:
197
+ with tf.gfile.GFile(input_file, "r") as reader:
198
+ while True:
199
+ line = tokenization.convert_to_unicode(reader.readline())
200
+ if not line:
201
+ break
202
+ line = line.strip()
203
+
204
+ # Empty lines are used as document delimiters
205
+ if not line:
206
+ all_documents.append([])
207
+ tokens = tokenizer.tokenize(line)
208
+ if tokens:
209
+ all_documents[-1].append(tokens)
210
+
211
+ # Remove empty documents
212
+ all_documents = [x for x in all_documents if x]
213
+ rng.shuffle(all_documents)
214
+
215
+ vocab_words = list(tokenizer.vocab.keys())
216
+ instances = []
217
+ for _ in range(dupe_factor):
218
+ for document_index in range(len(all_documents)):
219
+ instances.extend(
220
+ create_instances_from_document(
221
+ all_documents, document_index, max_seq_length, short_seq_prob,
222
+ masked_lm_prob, max_predictions_per_seq, vocab_words, rng))
223
+
224
+ rng.shuffle(instances)
225
+ return instances
226
+
227
+
228
+ def create_instances_from_document(
229
+ all_documents, document_index, max_seq_length, short_seq_prob,
230
+ masked_lm_prob, max_predictions_per_seq, vocab_words, rng):
231
+ """Creates `TrainingInstance`s for a single document."""
232
+ document = all_documents[document_index]
233
+
234
+ # Account for [CLS], [SEP], [SEP]
235
+ max_num_tokens = max_seq_length - 3
236
+
237
+ # We *usually* want to fill up the entire sequence since we are padding
238
+ # to `max_seq_length` anyways, so short sequences are generally wasted
239
+ # computation. However, we *sometimes*
240
+ # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
241
+ # sequences to minimize the mismatch between pre-training and fine-tuning.
242
+ # The `target_seq_length` is just a rough target however, whereas
243
+ # `max_seq_length` is a hard limit.
244
+ target_seq_length = max_num_tokens
245
+ if rng.random() < short_seq_prob:
246
+ target_seq_length = rng.randint(2, max_num_tokens)
247
+
248
+ # We DON'T just concatenate all of the tokens from a document into a long
249
+ # sequence and choose an arbitrary split point because this would make the
250
+ # next sentence prediction task too easy. Instead, we split the input into
251
+ # segments "A" and "B" based on the actual "sentences" provided by the user
252
+ # input.
253
+ instances = []
254
+ current_chunk = []
255
+ current_length = 0
256
+ i = 0
257
+ while i < len(document):
258
+ segment = document[i]
259
+ current_chunk.append(segment)
260
+ current_length += len(segment)
261
+ if i == len(document) - 1 or current_length >= target_seq_length:
262
+ if current_chunk:
263
+ # `a_end` is how many segments from `current_chunk` go into the `A`
264
+ # (first) sentence.
265
+ a_end = 1
266
+ if len(current_chunk) >= 2:
267
+ a_end = rng.randint(1, len(current_chunk) - 1)
268
+
269
+ tokens_a = []
270
+ for j in range(a_end):
271
+ tokens_a.extend(current_chunk[j])
272
+
273
+ tokens_b = []
274
+ # Random next
275
+ is_random_next = False
276
+ if len(current_chunk) == 1 or rng.random() < 0.5:
277
+ is_random_next = True
278
+ target_b_length = target_seq_length - len(tokens_a)
279
+
280
+ # This should rarely go for more than one iteration for large
281
+ # corpora. However, just to be careful, we try to make sure that
282
+ # the random document is not the same as the document
283
+ # we're processing.
284
+ for _ in range(10):
285
+ random_document_index = rng.randint(0, len(all_documents) - 1)
286
+ if random_document_index != document_index:
287
+ break
288
+
289
+ random_document = all_documents[random_document_index]
290
+ random_start = rng.randint(0, len(random_document) - 1)
291
+ for j in range(random_start, len(random_document)):
292
+ tokens_b.extend(random_document[j])
293
+ if len(tokens_b) >= target_b_length:
294
+ break
295
+ # We didn't actually use these segments so we "put them back" so
296
+ # they don't go to waste.
297
+ num_unused_segments = len(current_chunk) - a_end
298
+ i -= num_unused_segments
299
+ # Actual next
300
+ else:
301
+ is_random_next = False
302
+ for j in range(a_end, len(current_chunk)):
303
+ tokens_b.extend(current_chunk[j])
304
+ truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)
305
+
306
+ assert len(tokens_a) >= 1
307
+ assert len(tokens_b) >= 1
308
+
309
+ tokens = []
310
+ segment_ids = []
311
+ tokens.append("[CLS]")
312
+ segment_ids.append(0)
313
+ for token in tokens_a:
314
+ tokens.append(token)
315
+ segment_ids.append(0)
316
+
317
+ tokens.append("[SEP]")
318
+ segment_ids.append(0)
319
+
320
+ for token in tokens_b:
321
+ tokens.append(token)
322
+ segment_ids.append(1)
323
+ tokens.append("[SEP]")
324
+ segment_ids.append(1)
325
+
326
+ (tokens, masked_lm_positions,
327
+ masked_lm_labels) = create_masked_lm_predictions(
328
+ tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng)
329
+ instance = TrainingInstance(
330
+ tokens=tokens,
331
+ segment_ids=segment_ids,
332
+ is_random_next=is_random_next,
333
+ masked_lm_positions=masked_lm_positions,
334
+ masked_lm_labels=masked_lm_labels)
335
+ instances.append(instance)
336
+ current_chunk = []
337
+ current_length = 0
338
+ i += 1
339
+
340
+ return instances
341
+
342
+
343
+ def create_masked_lm_predictions(tokens, masked_lm_prob,
344
+ max_predictions_per_seq, vocab_words, rng):
345
+ """Creates the predictions for the masked LM objective."""
346
+
347
+ cand_indexes = []
348
+ for (i, token) in enumerate(tokens):
349
+ if token == "[CLS]" or token == "[SEP]":
350
+ continue
351
+ cand_indexes.append(i)
352
+
353
+ rng.shuffle(cand_indexes)
354
+
355
+ output_tokens = list(tokens)
356
+
357
+ masked_lm = collections.namedtuple("masked_lm", ["index", "label"]) # pylint: disable=invalid-name
358
+
359
+ num_to_predict = min(max_predictions_per_seq,
360
+ max(1, int(round(len(tokens) * masked_lm_prob))))
361
+
362
+ masked_lms = []
363
+ covered_indexes = set()
364
+ for index in cand_indexes:
365
+ if len(masked_lms) >= num_to_predict:
366
+ break
367
+ if index in covered_indexes:
368
+ continue
369
+ covered_indexes.add(index)
370
+
371
+ masked_token = None
372
+ # 80% of the time, replace with [MASK]
373
+ if rng.random() < 0.8:
374
+ masked_token = "[MASK]"
375
+ else:
376
+ # 10% of the time, keep original
377
+ if rng.random() < 0.5:
378
+ masked_token = tokens[index]
379
+ # 10% of the time, replace with random word
380
+ else:
381
+ masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]
382
+
383
+ output_tokens[index] = masked_token
384
+
385
+ masked_lms.append(masked_lm(index=index, label=tokens[index]))
386
+
387
+ masked_lms = sorted(masked_lms, key=lambda x: x.index)
388
+
389
+ masked_lm_positions = []
390
+ masked_lm_labels = []
391
+ for p in masked_lms:
392
+ masked_lm_positions.append(p.index)
393
+ masked_lm_labels.append(p.label)
394
+
395
+ return (output_tokens, masked_lm_positions, masked_lm_labels)
396
+
397
+
398
+ def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
399
+ """Truncates a pair of sequences to a maximum sequence length."""
400
+ while True:
401
+ total_length = len(tokens_a) + len(tokens_b)
402
+ if total_length <= max_num_tokens:
403
+ break
404
+
405
+ trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
406
+ assert len(trunc_tokens) >= 1
407
+
408
+ # We want to sometimes truncate from the front and sometimes from the
409
+ # back to add more randomness and avoid biases.
410
+ if rng.random() < 0.5:
411
+ del trunc_tokens[0]
412
+ else:
413
+ trunc_tokens.pop()
414
+
415
+
416
+ def main(_):
417
+ tf.logging.set_verbosity(tf.logging.INFO)
418
+
419
+ if FLAGS.thai_text:
420
+ if not FLAGS.spm_file:
421
+ print("Please specify the SentencePiece model file by using --spm_file.")
422
+ return
423
+ tokenizer = tokenization.ThaiTokenizer(vocab_file=FLAGS.vocab_file, spm_file=FLAGS.spm_file)
424
+ else:
425
+ tokenizer = tokenization.FullTokenizer(
426
+ vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
427
+
428
+ input_files = []
429
+ for input_pattern in FLAGS.input_file.split(","):
430
+ input_files.extend(tf.gfile.Glob(input_pattern))
431
+
432
+ tf.logging.info("*** Reading from input files ***")
433
+ for input_file in input_files:
434
+ tf.logging.info(" %s", input_file)
435
+
436
+ rng = random.Random(FLAGS.random_seed)
437
+ instances = create_training_instances(
438
+ input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor,
439
+ FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq,
440
+ rng)
441
+
442
+ output_files = FLAGS.output_file.split(",")
443
+ tf.logging.info("*** Writing to output files ***")
444
+ for output_file in output_files:
445
+ tf.logging.info(" %s", output_file)
446
+
447
+ write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length,
448
+ FLAGS.max_predictions_per_seq, output_files)
449
+
450
+
451
+ if __name__ == "__main__":
452
+ flags.mark_flag_as_required("input_file")
453
+ flags.mark_flag_as_required("output_file")
454
+ flags.mark_flag_as_required("vocab_file")
455
+ tf.app.run()
bert/modeling.py ADDED
@@ -0,0 +1,995 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """The main BERT model and related functions."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import collections
22
+ import copy
23
+ import json
24
+ import math
25
+ import re
26
+ import six
27
+ import tensorflow as tf
28
+
29
+
30
+ class BertConfig(object):
31
+ """Configuration for `BertModel`."""
32
+
33
+ def __init__(self,
34
+ vocab_size,
35
+ hidden_size=768,
36
+ num_hidden_layers=12,
37
+ num_attention_heads=12,
38
+ intermediate_size=3072,
39
+ hidden_act="gelu",
40
+ hidden_dropout_prob=0.1,
41
+ attention_probs_dropout_prob=0.1,
42
+ max_position_embeddings=512,
43
+ type_vocab_size=16,
44
+ initializer_range=0.02):
45
+ """Constructs BertConfig.
46
+
47
+ Args:
48
+ vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
49
+ hidden_size: Size of the encoder layers and the pooler layer.
50
+ num_hidden_layers: Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads: Number of attention heads for each attention layer in
52
+ the Transformer encoder.
53
+ intermediate_size: The size of the "intermediate" (i.e., feed-forward)
54
+ layer in the Transformer encoder.
55
+ hidden_act: The non-linear activation function (function or string) in the
56
+ encoder and pooler.
57
+ hidden_dropout_prob: The dropout probability for all fully connected
58
+ layers in the embeddings, encoder, and pooler.
59
+ attention_probs_dropout_prob: The dropout ratio for the attention
60
+ probabilities.
61
+ max_position_embeddings: The maximum sequence length that this model might
62
+ ever be used with. Typically set this to something large just in case
63
+ (e.g., 512 or 1024 or 2048).
64
+ type_vocab_size: The vocabulary size of the `token_type_ids` passed into
65
+ `BertModel`.
66
+ initializer_range: The stdev of the truncated_normal_initializer for
67
+ initializing all weight matrices.
68
+ """
69
+ self.vocab_size = vocab_size
70
+ self.hidden_size = hidden_size
71
+ self.num_hidden_layers = num_hidden_layers
72
+ self.num_attention_heads = num_attention_heads
73
+ self.hidden_act = hidden_act
74
+ self.intermediate_size = intermediate_size
75
+ self.hidden_dropout_prob = hidden_dropout_prob
76
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
77
+ self.max_position_embeddings = max_position_embeddings
78
+ self.type_vocab_size = type_vocab_size
79
+ self.initializer_range = initializer_range
80
+
81
+ @classmethod
82
+ def from_dict(cls, json_object):
83
+ """Constructs a `BertConfig` from a Python dictionary of parameters."""
84
+ config = BertConfig(vocab_size=None)
85
+ for (key, value) in six.iteritems(json_object):
86
+ config.__dict__[key] = value
87
+ return config
88
+
89
+ @classmethod
90
+ def from_json_file(cls, json_file):
91
+ """Constructs a `BertConfig` from a json file of parameters."""
92
+ with tf.gfile.GFile(json_file, "r") as reader:
93
+ text = reader.read()
94
+ return cls.from_dict(json.loads(text))
95
+
96
+ def to_dict(self):
97
+ """Serializes this instance to a Python dictionary."""
98
+ output = copy.deepcopy(self.__dict__)
99
+ return output
100
+
101
+ def to_json_string(self):
102
+ """Serializes this instance to a JSON string."""
103
+ return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
104
+
105
+
106
+ class BertModel(object):
107
+ """BERT model ("Bidirectional Embedding Representations from a Transformer").
108
+
109
+ Example usage:
110
+
111
+ ```python
112
+ # Already been converted into WordPiece token ids
113
+ input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
114
+ input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
115
+ token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])
116
+
117
+ config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
118
+ num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
119
+
120
+ model = modeling.BertModel(config=config, is_training=True,
121
+ input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)
122
+
123
+ label_embeddings = tf.get_variable(...)
124
+ pooled_output = model.get_pooled_output()
125
+ logits = tf.matmul(pooled_output, label_embeddings)
126
+ ...
127
+ ```
128
+ """
129
+
130
+ def __init__(self,
131
+ config,
132
+ is_training,
133
+ input_ids,
134
+ input_mask=None,
135
+ token_type_ids=None,
136
+ use_one_hot_embeddings=True,
137
+ scope=None):
138
+ """Constructor for BertModel.
139
+
140
+ Args:
141
+ config: `BertConfig` instance.
142
+ is_training: bool. rue for training model, false for eval model. Controls
143
+ whether dropout will be applied.
144
+ input_ids: int32 Tensor of shape [batch_size, seq_length].
145
+ input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
146
+ token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
147
+ use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
148
+ embeddings or tf.embedding_lookup() for the word embeddings. On the TPU,
149
+ it is must faster if this is True, on the CPU or GPU, it is faster if
150
+ this is False.
151
+ scope: (optional) variable scope. Defaults to "bert".
152
+
153
+ Raises:
154
+ ValueError: The config is invalid or one of the input tensor shapes
155
+ is invalid.
156
+ """
157
+ config = copy.deepcopy(config)
158
+ if not is_training:
159
+ config.hidden_dropout_prob = 0.0
160
+ config.attention_probs_dropout_prob = 0.0
161
+
162
+ input_shape = get_shape_list(input_ids, expected_rank=2)
163
+ batch_size = input_shape[0]
164
+ seq_length = input_shape[1]
165
+
166
+ if input_mask is None:
167
+ input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
168
+
169
+ if token_type_ids is None:
170
+ token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
171
+
172
+ with tf.variable_scope(scope, default_name="bert"):
173
+ with tf.variable_scope("embeddings"):
174
+ # Perform embedding lookup on the word ids.
175
+ (self.embedding_output, self.embedding_table) = embedding_lookup(
176
+ input_ids=input_ids,
177
+ vocab_size=config.vocab_size,
178
+ embedding_size=config.hidden_size,
179
+ initializer_range=config.initializer_range,
180
+ word_embedding_name="word_embeddings",
181
+ use_one_hot_embeddings=use_one_hot_embeddings)
182
+
183
+ # Add positional embeddings and token type embeddings, then layer
184
+ # normalize and perform dropout.
185
+ self.embedding_output = embedding_postprocessor(
186
+ input_tensor=self.embedding_output,
187
+ use_token_type=True,
188
+ token_type_ids=token_type_ids,
189
+ token_type_vocab_size=config.type_vocab_size,
190
+ token_type_embedding_name="token_type_embeddings",
191
+ use_position_embeddings=True,
192
+ position_embedding_name="position_embeddings",
193
+ initializer_range=config.initializer_range,
194
+ max_position_embeddings=config.max_position_embeddings,
195
+ dropout_prob=config.hidden_dropout_prob)
196
+
197
+ with tf.variable_scope("encoder"):
198
+ # This converts a 2D mask of shape [batch_size, seq_length] to a 3D
199
+ # mask of shape [batch_size, seq_length, seq_length] which is used
200
+ # for the attention scores.
201
+ attention_mask = create_attention_mask_from_input_mask(
202
+ input_ids, input_mask)
203
+
204
+ # Run the stacked transformer.
205
+ # `sequence_output` shape = [batch_size, seq_length, hidden_size].
206
+ self.all_encoder_layers = transformer_model(
207
+ input_tensor=self.embedding_output,
208
+ attention_mask=attention_mask,
209
+ hidden_size=config.hidden_size,
210
+ num_hidden_layers=config.num_hidden_layers,
211
+ num_attention_heads=config.num_attention_heads,
212
+ intermediate_size=config.intermediate_size,
213
+ intermediate_act_fn=get_activation(config.hidden_act),
214
+ hidden_dropout_prob=config.hidden_dropout_prob,
215
+ attention_probs_dropout_prob=config.attention_probs_dropout_prob,
216
+ initializer_range=config.initializer_range,
217
+ do_return_all_layers=True)
218
+
219
+ self.sequence_output = self.all_encoder_layers[-1]
220
+ # The "pooler" converts the encoded sequence tensor of shape
221
+ # [batch_size, seq_length, hidden_size] to a tensor of shape
222
+ # [batch_size, hidden_size]. This is necessary for segment-level
223
+ # (or segment-pair-level) classification tasks where we need a fixed
224
+ # dimensional representation of the segment.
225
+ with tf.variable_scope("pooler"):
226
+ # We "pool" the model by simply taking the hidden state corresponding
227
+ # to the first token. We assume that this has been pre-trained
228
+ first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
229
+ self.pooled_output = tf.layers.dense(
230
+ first_token_tensor,
231
+ config.hidden_size,
232
+ activation=tf.tanh,
233
+ kernel_initializer=create_initializer(config.initializer_range))
234
+
235
+ def get_pooled_output(self):
236
+ return self.pooled_output
237
+
238
+ def get_sequence_output(self):
239
+ """Gets final hidden layer of encoder.
240
+
241
+ Returns:
242
+ float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
243
+ to the final hidden of the transformer encoder.
244
+ """
245
+ return self.sequence_output
246
+
247
+ def get_all_encoder_layers(self):
248
+ return self.all_encoder_layers
249
+
250
+ def get_embedding_output(self):
251
+ """Gets output of the embedding lookup (i.e., input to the transformer).
252
+
253
+ Returns:
254
+ float Tensor of shape [batch_size, seq_length, hidden_size] corresponding
255
+ to the output of the embedding layer, after summing the word
256
+ embeddings with the positional embeddings and the token type embeddings,
257
+ then performing layer normalization. This is the input to the transformer.
258
+ """
259
+ return self.embedding_output
260
+
261
+ def get_embedding_table(self):
262
+ return self.embedding_table
263
+
264
+
265
+ def gelu(input_tensor):
266
+ """Gaussian Error Linear Unit.
267
+
268
+ This is a smoother version of the RELU.
269
+ Original paper: https://arxiv.org/abs/1606.08415
270
+
271
+ Args:
272
+ input_tensor: float Tensor to perform activation.
273
+
274
+ Returns:
275
+ `input_tensor` with the GELU activation applied.
276
+ """
277
+ cdf = 0.5 * (1.0 + tf.erf(input_tensor / tf.sqrt(2.0)))
278
+ return input_tensor * cdf
279
+
280
+
281
+ def get_activation(activation_string):
282
+ """Maps a string to a Python function, e.g., "relu" => `tf.nn.relu`.
283
+
284
+ Args:
285
+ activation_string: String name of the activation function.
286
+
287
+ Returns:
288
+ A Python function corresponding to the activation function. If
289
+ `activation_string` is None, empty, or "linear", this will return None.
290
+ If `activation_string` is not a string, it will return `activation_string`.
291
+
292
+ Raises:
293
+ ValueError: The `activation_string` does not correspond to a known
294
+ activation.
295
+ """
296
+
297
+ # We assume that anything that"s not a string is already an activation
298
+ # function, so we just return it.
299
+ if not isinstance(activation_string, six.string_types):
300
+ return activation_string
301
+
302
+ if not activation_string:
303
+ return None
304
+
305
+ act = activation_string.lower()
306
+ if act == "linear":
307
+ return None
308
+ elif act == "relu":
309
+ return tf.nn.relu
310
+ elif act == "gelu":
311
+ return gelu
312
+ elif act == "tanh":
313
+ return tf.tanh
314
+ else:
315
+ raise ValueError("Unsupported activation: %s" % act)
316
+
317
+
318
+ def get_assignment_map_from_checkpoint(tvars, init_checkpoint):
319
+ """Compute the union of the current variables and checkpoint variables."""
320
+ assignment_map = {}
321
+ initialized_variable_names = {}
322
+
323
+ name_to_variable = collections.OrderedDict()
324
+ for var in tvars:
325
+ name = var.name
326
+ m = re.match("^(.*):\\d+$", name)
327
+ if m is not None:
328
+ name = m.group(1)
329
+ name_to_variable[name] = var
330
+
331
+ init_vars = tf.train.list_variables(init_checkpoint)
332
+
333
+ assignment_map = collections.OrderedDict()
334
+ for x in init_vars:
335
+ (name, var) = (x[0], x[1])
336
+ if name not in name_to_variable:
337
+ continue
338
+ assignment_map[name] = name
339
+ initialized_variable_names[name] = 1
340
+ initialized_variable_names[name + ":0"] = 1
341
+
342
+ return (assignment_map, initialized_variable_names)
343
+
344
+
345
+ def dropout(input_tensor, dropout_prob):
346
+ """Perform dropout.
347
+
348
+ Args:
349
+ input_tensor: float Tensor.
350
+ dropout_prob: Python float. The probability of dropping out a value (NOT of
351
+ *keeping* a dimension as in `tf.nn.dropout`).
352
+
353
+ Returns:
354
+ A version of `input_tensor` with dropout applied.
355
+ """
356
+ if dropout_prob is None or dropout_prob == 0.0:
357
+ return input_tensor
358
+
359
+ output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob)
360
+ return output
361
+
362
+
363
+ def layer_norm(input_tensor, name=None):
364
+ """Run layer normalization on the last dimension of the tensor."""
365
+ return tf.contrib.layers.layer_norm(
366
+ inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)
367
+
368
+
369
+ def layer_norm_and_dropout(input_tensor, dropout_prob, name=None):
370
+ """Runs layer normalization followed by dropout."""
371
+ output_tensor = layer_norm(input_tensor, name)
372
+ output_tensor = dropout(output_tensor, dropout_prob)
373
+ return output_tensor
374
+
375
+
376
+ def create_initializer(initializer_range=0.02):
377
+ """Creates a `truncated_normal_initializer` with the given range."""
378
+ return tf.truncated_normal_initializer(stddev=initializer_range)
379
+
380
+
381
+ def embedding_lookup(input_ids,
382
+ vocab_size,
383
+ embedding_size=128,
384
+ initializer_range=0.02,
385
+ word_embedding_name="word_embeddings",
386
+ use_one_hot_embeddings=False):
387
+ """Looks up words embeddings for id tensor.
388
+
389
+ Args:
390
+ input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
391
+ ids.
392
+ vocab_size: int. Size of the embedding vocabulary.
393
+ embedding_size: int. Width of the word embeddings.
394
+ initializer_range: float. Embedding initialization range.
395
+ word_embedding_name: string. Name of the embedding table.
396
+ use_one_hot_embeddings: bool. If True, use one-hot method for word
397
+ embeddings. If False, use `tf.nn.embedding_lookup()`. One hot is better
398
+ for TPUs.
399
+
400
+ Returns:
401
+ float Tensor of shape [batch_size, seq_length, embedding_size].
402
+ """
403
+ # This function assumes that the input is of shape [batch_size, seq_length,
404
+ # num_inputs].
405
+ #
406
+ # If the input is a 2D tensor of shape [batch_size, seq_length], we
407
+ # reshape to [batch_size, seq_length, 1].
408
+ if input_ids.shape.ndims == 2:
409
+ input_ids = tf.expand_dims(input_ids, axis=[-1])
410
+
411
+ embedding_table = tf.get_variable(
412
+ name=word_embedding_name,
413
+ shape=[vocab_size, embedding_size],
414
+ initializer=create_initializer(initializer_range))
415
+
416
+ if use_one_hot_embeddings:
417
+ flat_input_ids = tf.reshape(input_ids, [-1])
418
+ one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
419
+ output = tf.matmul(one_hot_input_ids, embedding_table)
420
+ else:
421
+ output = tf.nn.embedding_lookup(embedding_table, input_ids)
422
+
423
+ input_shape = get_shape_list(input_ids)
424
+
425
+ output = tf.reshape(output,
426
+ input_shape[0:-1] + [input_shape[-1] * embedding_size])
427
+ return (output, embedding_table)
428
+
429
+
430
+ def embedding_postprocessor(input_tensor,
431
+ use_token_type=False,
432
+ token_type_ids=None,
433
+ token_type_vocab_size=16,
434
+ token_type_embedding_name="token_type_embeddings",
435
+ use_position_embeddings=True,
436
+ position_embedding_name="position_embeddings",
437
+ initializer_range=0.02,
438
+ max_position_embeddings=512,
439
+ dropout_prob=0.1):
440
+ """Performs various post-processing on a word embedding tensor.
441
+
442
+ Args:
443
+ input_tensor: float Tensor of shape [batch_size, seq_length,
444
+ embedding_size].
445
+ use_token_type: bool. Whether to add embeddings for `token_type_ids`.
446
+ token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
447
+ Must be specified if `use_token_type` is True.
448
+ token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
449
+ token_type_embedding_name: string. The name of the embedding table variable
450
+ for token type ids.
451
+ use_position_embeddings: bool. Whether to add position embeddings for the
452
+ position of each token in the sequence.
453
+ position_embedding_name: string. The name of the embedding table variable
454
+ for positional embeddings.
455
+ initializer_range: float. Range of the weight initialization.
456
+ max_position_embeddings: int. Maximum sequence length that might ever be
457
+ used with this model. This can be longer than the sequence length of
458
+ input_tensor, but cannot be shorter.
459
+ dropout_prob: float. Dropout probability applied to the final output tensor.
460
+
461
+ Returns:
462
+ float tensor with same shape as `input_tensor`.
463
+
464
+ Raises:
465
+ ValueError: One of the tensor shapes or input values is invalid.
466
+ """
467
+ input_shape = get_shape_list(input_tensor, expected_rank=3)
468
+ batch_size = input_shape[0]
469
+ seq_length = input_shape[1]
470
+ width = input_shape[2]
471
+
472
+ if seq_length > max_position_embeddings:
473
+ raise ValueError("The seq length (%d) cannot be greater than "
474
+ "`max_position_embeddings` (%d)" %
475
+ (seq_length, max_position_embeddings))
476
+
477
+ output = input_tensor
478
+
479
+ if use_token_type:
480
+ if token_type_ids is None:
481
+ raise ValueError("`token_type_ids` must be specified if"
482
+ "`use_token_type` is True.")
483
+ token_type_table = tf.get_variable(
484
+ name=token_type_embedding_name,
485
+ shape=[token_type_vocab_size, width],
486
+ initializer=create_initializer(initializer_range))
487
+ # This vocab will be small so we always do one-hot here, since it is always
488
+ # faster for a small vocabulary.
489
+ flat_token_type_ids = tf.reshape(token_type_ids, [-1])
490
+ one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
491
+ token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
492
+ token_type_embeddings = tf.reshape(token_type_embeddings,
493
+ [batch_size, seq_length, width])
494
+ output += token_type_embeddings
495
+
496
+ if use_position_embeddings:
497
+ full_position_embeddings = tf.get_variable(
498
+ name=position_embedding_name,
499
+ shape=[max_position_embeddings, width],
500
+ initializer=create_initializer(initializer_range))
501
+ # Since the position embedding table is a learned variable, we create it
502
+ # using a (long) sequence length `max_position_embeddings`. The actual
503
+ # sequence length might be shorter than this, for faster training of
504
+ # tasks that do not have long sequences.
505
+ #
506
+ # So `full_position_embeddings` is effectively an embedding table
507
+ # for position [0, 1, 2, ..., max_position_embeddings-1], and the current
508
+ # sequence has positions [0, 1, 2, ... seq_length-1], so we can just
509
+ # perform a slice.
510
+ if seq_length < max_position_embeddings:
511
+ position_embeddings = tf.slice(full_position_embeddings, [0, 0],
512
+ [seq_length, -1])
513
+ else:
514
+ position_embeddings = full_position_embeddings
515
+
516
+ num_dims = len(output.shape.as_list())
517
+
518
+ # Only the last two dimensions are relevant (`seq_length` and `width`), so
519
+ # we broadcast among the first dimensions, which is typically just
520
+ # the batch size.
521
+ position_broadcast_shape = []
522
+ for _ in range(num_dims - 2):
523
+ position_broadcast_shape.append(1)
524
+ position_broadcast_shape.extend([seq_length, width])
525
+ position_embeddings = tf.reshape(position_embeddings,
526
+ position_broadcast_shape)
527
+ output += position_embeddings
528
+
529
+ output = layer_norm_and_dropout(output, dropout_prob)
530
+ return output
531
+
532
+
533
+ def create_attention_mask_from_input_mask(from_tensor, to_mask):
534
+ """Create 3D attention mask from a 2D tensor mask.
535
+
536
+ Args:
537
+ from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
538
+ to_mask: int32 Tensor of shape [batch_size, to_seq_length].
539
+
540
+ Returns:
541
+ float Tensor of shape [batch_size, from_seq_length, to_seq_length].
542
+ """
543
+ from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
544
+ batch_size = from_shape[0]
545
+ from_seq_length = from_shape[1]
546
+
547
+ to_shape = get_shape_list(to_mask, expected_rank=2)
548
+ to_seq_length = to_shape[1]
549
+
550
+ to_mask = tf.cast(
551
+ tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
552
+
553
+ # We don't assume that `from_tensor` is a mask (although it could be). We
554
+ # don't actually care if we attend *from* padding tokens (only *to* padding)
555
+ # tokens so we create a tensor of all ones.
556
+ #
557
+ # `broadcast_ones` = [batch_size, from_seq_length, 1]
558
+ broadcast_ones = tf.ones(
559
+ shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
560
+
561
+ # Here we broadcast along two dimensions to create the mask.
562
+ mask = broadcast_ones * to_mask
563
+
564
+ return mask
565
+
566
+
567
+ def attention_layer(from_tensor,
568
+ to_tensor,
569
+ attention_mask=None,
570
+ num_attention_heads=1,
571
+ size_per_head=512,
572
+ query_act=None,
573
+ key_act=None,
574
+ value_act=None,
575
+ attention_probs_dropout_prob=0.0,
576
+ initializer_range=0.02,
577
+ do_return_2d_tensor=False,
578
+ batch_size=None,
579
+ from_seq_length=None,
580
+ to_seq_length=None):
581
+ """Performs multi-headed attention from `from_tensor` to `to_tensor`.
582
+
583
+ This is an implementation of multi-headed attention based on "Attention
584
+ is all you Need". If `from_tensor` and `to_tensor` are the same, then
585
+ this is self-attention. Each timestep in `from_tensor` attends to the
586
+ corresponding sequence in `to_tensor`, and returns a fixed-with vector.
587
+
588
+ This function first projects `from_tensor` into a "query" tensor and
589
+ `to_tensor` into "key" and "value" tensors. These are (effectively) a list
590
+ of tensors of length `num_attention_heads`, where each tensor is of shape
591
+ [batch_size, seq_length, size_per_head].
592
+
593
+ Then, the query and key tensors are dot-producted and scaled. These are
594
+ softmaxed to obtain attention probabilities. The value tensors are then
595
+ interpolated by these probabilities, then concatenated back to a single
596
+ tensor and returned.
597
+
598
+ In practice, the multi-headed attention are done with transposes and
599
+ reshapes rather than actual separate tensors.
600
+
601
+ Args:
602
+ from_tensor: float Tensor of shape [batch_size, from_seq_length,
603
+ from_width].
604
+ to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
605
+ attention_mask: (optional) int32 Tensor of shape [batch_size,
606
+ from_seq_length, to_seq_length]. The values should be 1 or 0. The
607
+ attention scores will effectively be set to -infinity for any positions in
608
+ the mask that are 0, and will be unchanged for positions that are 1.
609
+ num_attention_heads: int. Number of attention heads.
610
+ size_per_head: int. Size of each attention head.
611
+ query_act: (optional) Activation function for the query transform.
612
+ key_act: (optional) Activation function for the key transform.
613
+ value_act: (optional) Activation function for the value transform.
614
+ attention_probs_dropout_prob: (optional) float. Dropout probability of the
615
+ attention probabilities.
616
+ initializer_range: float. Range of the weight initializer.
617
+ do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
618
+ * from_seq_length, num_attention_heads * size_per_head]. If False, the
619
+ output will be of shape [batch_size, from_seq_length, num_attention_heads
620
+ * size_per_head].
621
+ batch_size: (Optional) int. If the input is 2D, this might be the batch size
622
+ of the 3D version of the `from_tensor` and `to_tensor`.
623
+ from_seq_length: (Optional) If the input is 2D, this might be the seq length
624
+ of the 3D version of the `from_tensor`.
625
+ to_seq_length: (Optional) If the input is 2D, this might be the seq length
626
+ of the 3D version of the `to_tensor`.
627
+
628
+ Returns:
629
+ float Tensor of shape [batch_size, from_seq_length,
630
+ num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
631
+ true, this will be of shape [batch_size * from_seq_length,
632
+ num_attention_heads * size_per_head]).
633
+
634
+ Raises:
635
+ ValueError: Any of the arguments or tensor shapes are invalid.
636
+ """
637
+
638
+ def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
639
+ seq_length, width):
640
+ output_tensor = tf.reshape(
641
+ input_tensor, [batch_size, seq_length, num_attention_heads, width])
642
+
643
+ output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
644
+ return output_tensor
645
+
646
+ from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
647
+ to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
648
+
649
+ if len(from_shape) != len(to_shape):
650
+ raise ValueError(
651
+ "The rank of `from_tensor` must match the rank of `to_tensor`.")
652
+
653
+ if len(from_shape) == 3:
654
+ batch_size = from_shape[0]
655
+ from_seq_length = from_shape[1]
656
+ to_seq_length = to_shape[1]
657
+ elif len(from_shape) == 2:
658
+ if (batch_size is None or from_seq_length is None or to_seq_length is None):
659
+ raise ValueError(
660
+ "When passing in rank 2 tensors to attention_layer, the values "
661
+ "for `batch_size`, `from_seq_length`, and `to_seq_length` "
662
+ "must all be specified.")
663
+
664
+ # Scalar dimensions referenced here:
665
+ # B = batch size (number of sequences)
666
+ # F = `from_tensor` sequence length
667
+ # T = `to_tensor` sequence length
668
+ # N = `num_attention_heads`
669
+ # H = `size_per_head`
670
+
671
+ from_tensor_2d = reshape_to_matrix(from_tensor)
672
+ to_tensor_2d = reshape_to_matrix(to_tensor)
673
+
674
+ # `query_layer` = [B*F, N*H]
675
+ query_layer = tf.layers.dense(
676
+ from_tensor_2d,
677
+ num_attention_heads * size_per_head,
678
+ activation=query_act,
679
+ name="query",
680
+ kernel_initializer=create_initializer(initializer_range))
681
+
682
+ # `key_layer` = [B*T, N*H]
683
+ key_layer = tf.layers.dense(
684
+ to_tensor_2d,
685
+ num_attention_heads * size_per_head,
686
+ activation=key_act,
687
+ name="key",
688
+ kernel_initializer=create_initializer(initializer_range))
689
+
690
+ # `value_layer` = [B*T, N*H]
691
+ value_layer = tf.layers.dense(
692
+ to_tensor_2d,
693
+ num_attention_heads * size_per_head,
694
+ activation=value_act,
695
+ name="value",
696
+ kernel_initializer=create_initializer(initializer_range))
697
+
698
+ # `query_layer` = [B, N, F, H]
699
+ query_layer = transpose_for_scores(query_layer, batch_size,
700
+ num_attention_heads, from_seq_length,
701
+ size_per_head)
702
+
703
+ # `key_layer` = [B, N, T, H]
704
+ key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
705
+ to_seq_length, size_per_head)
706
+
707
+ # Take the dot product between "query" and "key" to get the raw
708
+ # attention scores.
709
+ # `attention_scores` = [B, N, F, T]
710
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
711
+ attention_scores = tf.multiply(attention_scores,
712
+ 1.0 / math.sqrt(float(size_per_head)))
713
+
714
+ if attention_mask is not None:
715
+ # `attention_mask` = [B, 1, F, T]
716
+ attention_mask = tf.expand_dims(attention_mask, axis=[1])
717
+
718
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
719
+ # masked positions, this operation will create a tensor which is 0.0 for
720
+ # positions we want to attend and -10000.0 for masked positions.
721
+ adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
722
+
723
+ # Since we are adding it to the raw scores before the softmax, this is
724
+ # effectively the same as removing these entirely.
725
+ attention_scores += adder
726
+
727
+ # Normalize the attention scores to probabilities.
728
+ # `attention_probs` = [B, N, F, T]
729
+ attention_probs = tf.nn.softmax(attention_scores)
730
+
731
+ # This is actually dropping out entire tokens to attend to, which might
732
+ # seem a bit unusual, but is taken from the original Transformer paper.
733
+ attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
734
+
735
+ # `value_layer` = [B, T, N, H]
736
+ value_layer = tf.reshape(
737
+ value_layer,
738
+ [batch_size, to_seq_length, num_attention_heads, size_per_head])
739
+
740
+ # `value_layer` = [B, N, T, H]
741
+ value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
742
+
743
+ # `context_layer` = [B, N, F, H]
744
+ context_layer = tf.matmul(attention_probs, value_layer)
745
+
746
+ # `context_layer` = [B, F, N, H]
747
+ context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
748
+
749
+ if do_return_2d_tensor:
750
+ # `context_layer` = [B*F, N*V]
751
+ context_layer = tf.reshape(
752
+ context_layer,
753
+ [batch_size * from_seq_length, num_attention_heads * size_per_head])
754
+ else:
755
+ # `context_layer` = [B, F, N*V]
756
+ context_layer = tf.reshape(
757
+ context_layer,
758
+ [batch_size, from_seq_length, num_attention_heads * size_per_head])
759
+
760
+ return context_layer
761
+
762
+
763
+ def transformer_model(input_tensor,
764
+ attention_mask=None,
765
+ hidden_size=768,
766
+ num_hidden_layers=12,
767
+ num_attention_heads=12,
768
+ intermediate_size=3072,
769
+ intermediate_act_fn=gelu,
770
+ hidden_dropout_prob=0.1,
771
+ attention_probs_dropout_prob=0.1,
772
+ initializer_range=0.02,
773
+ do_return_all_layers=False):
774
+ """Multi-headed, multi-layer Transformer from "Attention is All You Need".
775
+
776
+ This is almost an exact implementation of the original Transformer encoder.
777
+
778
+ See the original paper:
779
+ https://arxiv.org/abs/1706.03762
780
+
781
+ Also see:
782
+ https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
783
+
784
+ Args:
785
+ input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
786
+ attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
787
+ seq_length], with 1 for positions that can be attended to and 0 in
788
+ positions that should not be.
789
+ hidden_size: int. Hidden size of the Transformer.
790
+ num_hidden_layers: int. Number of layers (blocks) in the Transformer.
791
+ num_attention_heads: int. Number of attention heads in the Transformer.
792
+ intermediate_size: int. The size of the "intermediate" (a.k.a., feed
793
+ forward) layer.
794
+ intermediate_act_fn: function. The non-linear activation function to apply
795
+ to the output of the intermediate/feed-forward layer.
796
+ hidden_dropout_prob: float. Dropout probability for the hidden layers.
797
+ attention_probs_dropout_prob: float. Dropout probability of the attention
798
+ probabilities.
799
+ initializer_range: float. Range of the initializer (stddev of truncated
800
+ normal).
801
+ do_return_all_layers: Whether to also return all layers or just the final
802
+ layer.
803
+
804
+ Returns:
805
+ float Tensor of shape [batch_size, seq_length, hidden_size], the final
806
+ hidden layer of the Transformer.
807
+
808
+ Raises:
809
+ ValueError: A Tensor shape or parameter is invalid.
810
+ """
811
+ if hidden_size % num_attention_heads != 0:
812
+ raise ValueError(
813
+ "The hidden size (%d) is not a multiple of the number of attention "
814
+ "heads (%d)" % (hidden_size, num_attention_heads))
815
+
816
+ attention_head_size = int(hidden_size / num_attention_heads)
817
+ input_shape = get_shape_list(input_tensor, expected_rank=3)
818
+ batch_size = input_shape[0]
819
+ seq_length = input_shape[1]
820
+ input_width = input_shape[2]
821
+
822
+ # The Transformer performs sum residuals on all layers so the input needs
823
+ # to be the same as the hidden size.
824
+ if input_width != hidden_size:
825
+ raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
826
+ (input_width, hidden_size))
827
+
828
+ # We keep the representation as a 2D tensor to avoid re-shaping it back and
829
+ # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
830
+ # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
831
+ # help the optimizer.
832
+ prev_output = reshape_to_matrix(input_tensor)
833
+
834
+ all_layer_outputs = []
835
+ for layer_idx in range(num_hidden_layers):
836
+ with tf.variable_scope("layer_%d" % layer_idx):
837
+ layer_input = prev_output
838
+
839
+ with tf.variable_scope("attention"):
840
+ attention_heads = []
841
+ with tf.variable_scope("self"):
842
+ attention_head = attention_layer(
843
+ from_tensor=layer_input,
844
+ to_tensor=layer_input,
845
+ attention_mask=attention_mask,
846
+ num_attention_heads=num_attention_heads,
847
+ size_per_head=attention_head_size,
848
+ attention_probs_dropout_prob=attention_probs_dropout_prob,
849
+ initializer_range=initializer_range,
850
+ do_return_2d_tensor=True,
851
+ batch_size=batch_size,
852
+ from_seq_length=seq_length,
853
+ to_seq_length=seq_length)
854
+ attention_heads.append(attention_head)
855
+
856
+ attention_output = None
857
+ if len(attention_heads) == 1:
858
+ attention_output = attention_heads[0]
859
+ else:
860
+ # In the case where we have other sequences, we just concatenate
861
+ # them to the self-attention head before the projection.
862
+ attention_output = tf.concat(attention_heads, axis=-1)
863
+
864
+ # Run a linear projection of `hidden_size` then add a residual
865
+ # with `layer_input`.
866
+ with tf.variable_scope("output"):
867
+ attention_output = tf.layers.dense(
868
+ attention_output,
869
+ hidden_size,
870
+ kernel_initializer=create_initializer(initializer_range))
871
+ attention_output = dropout(attention_output, hidden_dropout_prob)
872
+ attention_output = layer_norm(attention_output + layer_input)
873
+
874
+ # The activation is only applied to the "intermediate" hidden layer.
875
+ with tf.variable_scope("intermediate"):
876
+ intermediate_output = tf.layers.dense(
877
+ attention_output,
878
+ intermediate_size,
879
+ activation=intermediate_act_fn,
880
+ kernel_initializer=create_initializer(initializer_range))
881
+
882
+ # Down-project back to `hidden_size` then add the residual.
883
+ with tf.variable_scope("output"):
884
+ layer_output = tf.layers.dense(
885
+ intermediate_output,
886
+ hidden_size,
887
+ kernel_initializer=create_initializer(initializer_range))
888
+ layer_output = dropout(layer_output, hidden_dropout_prob)
889
+ layer_output = layer_norm(layer_output + attention_output)
890
+ prev_output = layer_output
891
+ all_layer_outputs.append(layer_output)
892
+
893
+ if do_return_all_layers:
894
+ final_outputs = []
895
+ for layer_output in all_layer_outputs:
896
+ final_output = reshape_from_matrix(layer_output, input_shape)
897
+ final_outputs.append(final_output)
898
+ return final_outputs
899
+ else:
900
+ final_output = reshape_from_matrix(prev_output, input_shape)
901
+ return final_output
902
+
903
+
904
+ def get_shape_list(tensor, expected_rank=None, name=None):
905
+ """Returns a list of the shape of tensor, preferring static dimensions.
906
+
907
+ Args:
908
+ tensor: A tf.Tensor object to find the shape of.
909
+ expected_rank: (optional) int. The expected rank of `tensor`. If this is
910
+ specified and the `tensor` has a different rank, and exception will be
911
+ thrown.
912
+ name: Optional name of the tensor for the error message.
913
+
914
+ Returns:
915
+ A list of dimensions of the shape of tensor. All static dimensions will
916
+ be returned as python integers, and dynamic dimensions will be returned
917
+ as tf.Tensor scalars.
918
+ """
919
+ if name is None:
920
+ name = tensor.name
921
+
922
+ if expected_rank is not None:
923
+ assert_rank(tensor, expected_rank, name)
924
+
925
+ shape = tensor.shape.as_list()
926
+
927
+ non_static_indexes = []
928
+ for (index, dim) in enumerate(shape):
929
+ if dim is None:
930
+ non_static_indexes.append(index)
931
+
932
+ if not non_static_indexes:
933
+ return shape
934
+
935
+ dyn_shape = tf.shape(tensor)
936
+ for index in non_static_indexes:
937
+ shape[index] = dyn_shape[index]
938
+ return shape
939
+
940
+
941
+ def reshape_to_matrix(input_tensor):
942
+ """Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
943
+ ndims = input_tensor.shape.ndims
944
+ if ndims < 2:
945
+ raise ValueError("Input tensor must have at least rank 2. Shape = %s" %
946
+ (input_tensor.shape))
947
+ if ndims == 2:
948
+ return input_tensor
949
+
950
+ width = input_tensor.shape[-1]
951
+ output_tensor = tf.reshape(input_tensor, [-1, width])
952
+ return output_tensor
953
+
954
+
955
+ def reshape_from_matrix(output_tensor, orig_shape_list):
956
+ """Reshapes a rank 2 tensor back to its original rank >= 2 tensor."""
957
+ if len(orig_shape_list) == 2:
958
+ return output_tensor
959
+
960
+ output_shape = get_shape_list(output_tensor)
961
+
962
+ orig_dims = orig_shape_list[0:-1]
963
+ width = output_shape[-1]
964
+
965
+ return tf.reshape(output_tensor, orig_dims + [width])
966
+
967
+
968
+ def assert_rank(tensor, expected_rank, name=None):
969
+ """Raises an exception if the tensor rank is not of the expected rank.
970
+
971
+ Args:
972
+ tensor: A tf.Tensor to check the rank of.
973
+ expected_rank: Python integer or list of integers, expected rank.
974
+ name: Optional name of the tensor for the error message.
975
+
976
+ Raises:
977
+ ValueError: If the expected shape doesn't match the actual shape.
978
+ """
979
+ if name is None:
980
+ name = tensor.name
981
+
982
+ expected_rank_dict = {}
983
+ if isinstance(expected_rank, six.integer_types):
984
+ expected_rank_dict[expected_rank] = True
985
+ else:
986
+ for x in expected_rank:
987
+ expected_rank_dict[x] = True
988
+
989
+ actual_rank = tensor.shape.ndims
990
+ if actual_rank not in expected_rank_dict:
991
+ scope_name = tf.get_variable_scope().name
992
+ raise ValueError(
993
+ "For the tensor `%s` in scope `%s`, the actual rank "
994
+ "`%d` (shape = %s) is not equal to the expected rank `%s`" %
995
+ (name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
bert/optimization.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Functions and classes related to optimization (weight updates)."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import re
22
+ import tensorflow as tf
23
+
24
+
25
+ def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
26
+ """Creates an optimizer training op."""
27
+ global_step = tf.train.get_or_create_global_step()
28
+
29
+ learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
30
+
31
+ # Implements linear decay of the learning rate.
32
+ learning_rate = tf.train.polynomial_decay(
33
+ learning_rate,
34
+ global_step,
35
+ num_train_steps,
36
+ end_learning_rate=0.0,
37
+ power=1.0,
38
+ cycle=False)
39
+
40
+ # Implements linear warmup. I.e., if global_step < num_warmup_steps, the
41
+ # learning rate will be `global_step/num_warmup_steps * init_lr`.
42
+ if num_warmup_steps:
43
+ global_steps_int = tf.cast(global_step, tf.int32)
44
+ warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
45
+
46
+ global_steps_float = tf.cast(global_steps_int, tf.float32)
47
+ warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
48
+
49
+ warmup_percent_done = global_steps_float / warmup_steps_float
50
+ warmup_learning_rate = init_lr * warmup_percent_done
51
+
52
+ is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
53
+ learning_rate = (
54
+ (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
55
+
56
+ # It is recommended that you use this optimizer for fine tuning, since this
57
+ # is how the model was trained (note that the Adam m/v variables are NOT
58
+ # loaded from init_checkpoint.)
59
+ optimizer = AdamWeightDecayOptimizer(
60
+ learning_rate=learning_rate,
61
+ weight_decay_rate=0.01,
62
+ beta_1=0.9,
63
+ beta_2=0.999,
64
+ epsilon=1e-6,
65
+ exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
66
+
67
+ if use_tpu:
68
+ optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
69
+
70
+ tvars = tf.trainable_variables()
71
+ grads = tf.gradients(loss, tvars)
72
+
73
+ # This is how the model was pre-trained.
74
+ (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
75
+
76
+ train_op = optimizer.apply_gradients(
77
+ zip(grads, tvars), global_step=global_step)
78
+
79
+ new_global_step = global_step + 1
80
+ train_op = tf.group(train_op, [global_step.assign(new_global_step)])
81
+ return train_op
82
+
83
+
84
+ class AdamWeightDecayOptimizer(tf.train.Optimizer):
85
+ """A basic Adam optimizer that includes "correct" L2 weight decay."""
86
+
87
+ def __init__(self,
88
+ learning_rate,
89
+ weight_decay_rate=0.0,
90
+ beta_1=0.9,
91
+ beta_2=0.999,
92
+ epsilon=1e-6,
93
+ exclude_from_weight_decay=None,
94
+ name="AdamWeightDecayOptimizer"):
95
+ """Constructs a AdamWeightDecayOptimizer."""
96
+ super(AdamWeightDecayOptimizer, self).__init__(False, name)
97
+
98
+ self.learning_rate = learning_rate
99
+ self.weight_decay_rate = weight_decay_rate
100
+ self.beta_1 = beta_1
101
+ self.beta_2 = beta_2
102
+ self.epsilon = epsilon
103
+ self.exclude_from_weight_decay = exclude_from_weight_decay
104
+
105
+ def apply_gradients(self, grads_and_vars, global_step=None, name=None):
106
+ """See base class."""
107
+ assignments = []
108
+ for (grad, param) in grads_and_vars:
109
+ if grad is None or param is None:
110
+ continue
111
+
112
+ param_name = self._get_variable_name(param.name)
113
+
114
+ m = tf.get_variable(
115
+ name=param_name + "/adam_m",
116
+ shape=param.shape.as_list(),
117
+ dtype=tf.float32,
118
+ trainable=False,
119
+ initializer=tf.zeros_initializer())
120
+ v = tf.get_variable(
121
+ name=param_name + "/adam_v",
122
+ shape=param.shape.as_list(),
123
+ dtype=tf.float32,
124
+ trainable=False,
125
+ initializer=tf.zeros_initializer())
126
+
127
+ # Standard Adam update.
128
+ next_m = (
129
+ tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
130
+ next_v = (
131
+ tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
132
+ tf.square(grad)))
133
+
134
+ update = next_m / (tf.sqrt(next_v) + self.epsilon)
135
+
136
+ # Just adding the square of the weights to the loss function is *not*
137
+ # the correct way of using L2 regularization/weight decay with Adam,
138
+ # since that will interact with the m and v parameters in strange ways.
139
+ #
140
+ # Instead we want ot decay the weights in a manner that doesn't interact
141
+ # with the m/v parameters. This is equivalent to adding the square
142
+ # of the weights to the loss with plain (non-momentum) SGD.
143
+ if self._do_use_weight_decay(param_name):
144
+ update += self.weight_decay_rate * param
145
+
146
+ update_with_lr = self.learning_rate * update
147
+
148
+ next_param = param - update_with_lr
149
+
150
+ assignments.extend(
151
+ [param.assign(next_param),
152
+ m.assign(next_m),
153
+ v.assign(next_v)])
154
+ return tf.group(*assignments, name=name)
155
+
156
+ def _do_use_weight_decay(self, param_name):
157
+ """Whether to use L2 weight decay for `param_name`."""
158
+ if not self.weight_decay_rate:
159
+ return False
160
+ if self.exclude_from_weight_decay:
161
+ for r in self.exclude_from_weight_decay:
162
+ if re.search(r, param_name) is not None:
163
+ return False
164
+ return True
165
+
166
+ def _get_variable_name(self, param_name):
167
+ """Get the variable name from the tensor name."""
168
+ m = re.match("^(.*):\\d+$", param_name)
169
+ if m is not None:
170
+ param_name = m.group(1)
171
+ return param_name
bert/requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ tensorflow >= 1.11.0 # CPU Version of TensorFlow.
2
+
3
+ # tensorflow-gpu >= 1.11.0 # GPU version of TensorFlow.
4
+
5
+ sentencepiece==0.0.9
bert/run_classifier.py ADDED
@@ -0,0 +1,976 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """BERT finetuning runner."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import collections
22
+ import csv
23
+ import os
24
+ import modeling
25
+ import optimization
26
+ import tokenization
27
+ import tensorflow as tf
28
+
29
+ flags = tf.flags
30
+
31
+ FLAGS = flags.FLAGS
32
+
33
+ ## Required parameters
34
+ flags.DEFINE_string(
35
+ "data_dir", None,
36
+ "The input data dir. Should contain the .tsv files (or other data files) "
37
+ "for the task.")
38
+
39
+ flags.DEFINE_string(
40
+ "bert_config_file", None,
41
+ "The config json file corresponding to the pre-trained BERT model. "
42
+ "This specifies the model architecture.")
43
+
44
+ flags.DEFINE_string("task_name", None, "The name of the task to train.")
45
+
46
+ flags.DEFINE_string("vocab_file", None,
47
+ "The vocabulary file that the BERT model was trained on.")
48
+
49
+ flags.DEFINE_string(
50
+ "output_dir", None,
51
+ "The output directory where the model checkpoints will be written.")
52
+
53
+ ## Other parameters
54
+
55
+ flags.DEFINE_string(
56
+ "init_checkpoint", None,
57
+ "Initial checkpoint (usually from a pre-trained BERT model).")
58
+
59
+ flags.DEFINE_bool(
60
+ "do_lower_case", True,
61
+ "Whether to lower case the input text. Should be True for uncased "
62
+ "models and False for cased models.")
63
+
64
+ flags.DEFINE_integer(
65
+ "max_seq_length", 128,
66
+ "The maximum total input sequence length after WordPiece tokenization. "
67
+ "Sequences longer than this will be truncated, and sequences shorter "
68
+ "than this will be padded.")
69
+
70
+ flags.DEFINE_bool("do_train", False, "Whether to run training.")
71
+
72
+ flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
73
+
74
+ flags.DEFINE_bool(
75
+ "do_predict", False,
76
+ "Whether to run the model in inference mode on the test set.")
77
+
78
+ flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
79
+
80
+ flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
81
+
82
+ flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
83
+
84
+ flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
85
+
86
+ flags.DEFINE_float("num_train_epochs", 3.0,
87
+ "Total number of training epochs to perform.")
88
+
89
+ flags.DEFINE_float(
90
+ "warmup_proportion", 0.1,
91
+ "Proportion of training to perform linear learning rate warmup for. "
92
+ "E.g., 0.1 = 10% of training.")
93
+
94
+ flags.DEFINE_integer("save_checkpoints_steps", 1000,
95
+ "How often to save the model checkpoint.")
96
+
97
+ flags.DEFINE_integer("iterations_per_loop", 1000,
98
+ "How many steps to make in each estimator call.")
99
+
100
+ flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
101
+
102
+ tf.flags.DEFINE_string(
103
+ "tpu_name", None,
104
+ "The Cloud TPU to use for training. This should be either the name "
105
+ "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
106
+ "url.")
107
+
108
+ tf.flags.DEFINE_string(
109
+ "tpu_zone", None,
110
+ "[Optional] GCE zone where the Cloud TPU is located in. If not "
111
+ "specified, we will attempt to automatically detect the GCE project from "
112
+ "metadata.")
113
+
114
+ tf.flags.DEFINE_string(
115
+ "gcp_project", None,
116
+ "[Optional] Project name for the Cloud TPU-enabled project. If not "
117
+ "specified, we will attempt to automatically detect the GCE project from "
118
+ "metadata.")
119
+
120
+ tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
121
+
122
+ flags.DEFINE_integer(
123
+ "num_tpu_cores", 8,
124
+ "Only used if `use_tpu` is True. Total number of TPU cores to use.")
125
+
126
+ flags.DEFINE_string(
127
+ "spm_file", None,
128
+ "SentencePiece model file for Thai language.")
129
+
130
+ flags.DEFINE_string(
131
+ "xnli_language", None,
132
+ "Specified language for XNLI processing.")
133
+
134
+
135
+ class InputExample(object):
136
+ """A single training/test example for simple sequence classification."""
137
+
138
+ def __init__(self, guid, text_a, text_b=None, label=None):
139
+ """Constructs a InputExample.
140
+
141
+ Args:
142
+ guid: Unique id for the example.
143
+ text_a: string. The untokenized text of the first sequence. For single
144
+ sequence tasks, only this sequence must be specified.
145
+ text_b: (Optional) string. The untokenized text of the second sequence.
146
+ Only must be specified for sequence pair tasks.
147
+ label: (Optional) string. The label of the example. This should be
148
+ specified for train and dev examples, but not for test examples.
149
+ """
150
+ self.guid = guid
151
+ self.text_a = text_a
152
+ self.text_b = text_b
153
+ self.label = label
154
+
155
+
156
+ class InputFeatures(object):
157
+ """A single set of features of data."""
158
+
159
+ def __init__(self, input_ids, input_mask, segment_ids, label_id):
160
+ self.input_ids = input_ids
161
+ self.input_mask = input_mask
162
+ self.segment_ids = segment_ids
163
+ self.label_id = label_id
164
+
165
+
166
+ class DataProcessor(object):
167
+ """Base class for data converters for sequence classification data sets."""
168
+
169
+ def get_train_examples(self, data_dir):
170
+ """Gets a collection of `InputExample`s for the train set."""
171
+ raise NotImplementedError()
172
+
173
+ def get_dev_examples(self, data_dir):
174
+ """Gets a collection of `InputExample`s for the dev set."""
175
+ raise NotImplementedError()
176
+
177
+ def get_test_examples(self, data_dir):
178
+ """Gets a collection of `InputExample`s for prediction."""
179
+ raise NotImplementedError()
180
+
181
+ def get_labels(self):
182
+ """Gets the list of labels for this data set."""
183
+ raise NotImplementedError()
184
+
185
+ @classmethod
186
+ def _read_tsv(cls, input_file, quotechar=None):
187
+ """Reads a tab separated value file."""
188
+ with tf.gfile.Open(input_file, "r") as f:
189
+ reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
190
+ lines = []
191
+ for line in reader:
192
+ lines.append(line)
193
+ return lines
194
+
195
+
196
+ class XnliProcessor(DataProcessor):
197
+ """Processor for the XNLI data set."""
198
+
199
+ def __init__(self, language='zh'):
200
+ self.language = language
201
+
202
+ def get_train_examples(self, data_dir):
203
+ """See base class."""
204
+ lines = self._read_tsv(
205
+ os.path.join(data_dir, "multinli",
206
+ "multinli.train.%s.tsv" % self.language))
207
+ examples = []
208
+ for (i, line) in enumerate(lines):
209
+ if i == 0:
210
+ continue
211
+ guid = "train-%d" % (i)
212
+ text_a = tokenization.convert_to_unicode(line[0])
213
+ text_b = tokenization.convert_to_unicode(line[1])
214
+ label = tokenization.convert_to_unicode(line[2])
215
+ if label == tokenization.convert_to_unicode("contradictory"):
216
+ label = tokenization.convert_to_unicode("contradiction")
217
+ examples.append(
218
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
219
+ return examples
220
+
221
+ def get_dev_examples(self, data_dir):
222
+ """See base class."""
223
+ #lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
224
+ lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
225
+ examples = []
226
+ for (i, line) in enumerate(lines):
227
+ if i == 0:
228
+ continue
229
+ guid = "dev-%d" % (i)
230
+ language = tokenization.convert_to_unicode(line[0])
231
+ if language != tokenization.convert_to_unicode(self.language):
232
+ continue
233
+ text_a = tokenization.convert_to_unicode(line[6])
234
+ text_b = tokenization.convert_to_unicode(line[7])
235
+ label = tokenization.convert_to_unicode(line[1])
236
+ examples.append(
237
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
238
+ return examples
239
+
240
+ def get_labels(self):
241
+ """See base class."""
242
+ return ["contradiction", "entailment", "neutral"]
243
+
244
+
245
+ class MnliProcessor(DataProcessor):
246
+ """Processor for the MultiNLI data set (GLUE version)."""
247
+
248
+ def get_train_examples(self, data_dir):
249
+ """See base class."""
250
+ return self._create_examples(
251
+ self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
252
+
253
+ def get_dev_examples(self, data_dir):
254
+ """See base class."""
255
+ return self._create_examples(
256
+ self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
257
+ "dev_matched")
258
+
259
+ def get_test_examples(self, data_dir):
260
+ """See base class."""
261
+ return self._create_examples(
262
+ self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
263
+
264
+ def get_labels(self):
265
+ """See base class."""
266
+ return ["contradiction", "entailment", "neutral"]
267
+
268
+ def _create_examples(self, lines, set_type):
269
+ """Creates examples for the training and dev sets."""
270
+ examples = []
271
+ for (i, line) in enumerate(lines):
272
+ if i == 0:
273
+ continue
274
+ guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0]))
275
+ text_a = tokenization.convert_to_unicode(line[8])
276
+ text_b = tokenization.convert_to_unicode(line[9])
277
+ if set_type == "test":
278
+ label = "contradiction"
279
+ else:
280
+ label = tokenization.convert_to_unicode(line[-1])
281
+ examples.append(
282
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
283
+ return examples
284
+
285
+
286
+ class MrpcProcessor(DataProcessor):
287
+ """Processor for the MRPC data set (GLUE version)."""
288
+
289
+ def get_train_examples(self, data_dir):
290
+ """See base class."""
291
+ return self._create_examples(
292
+ self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
293
+
294
+ def get_dev_examples(self, data_dir):
295
+ """See base class."""
296
+ return self._create_examples(
297
+ self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
298
+
299
+ def get_test_examples(self, data_dir):
300
+ """See base class."""
301
+ return self._create_examples(
302
+ self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
303
+
304
+ def get_labels(self):
305
+ """See base class."""
306
+ return ["0", "1"]
307
+
308
+ def _create_examples(self, lines, set_type):
309
+ """Creates examples for the training and dev sets."""
310
+ examples = []
311
+ for (i, line) in enumerate(lines):
312
+ if i == 0:
313
+ continue
314
+ guid = "%s-%s" % (set_type, i)
315
+ text_a = tokenization.convert_to_unicode(line[3])
316
+ text_b = tokenization.convert_to_unicode(line[4])
317
+ if set_type == "test":
318
+ label = "0"
319
+ else:
320
+ label = tokenization.convert_to_unicode(line[0])
321
+ examples.append(
322
+ InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
323
+ return examples
324
+
325
+
326
+ class ColaProcessor(DataProcessor):
327
+ """Processor for the CoLA data set (GLUE version)."""
328
+
329
+ def get_train_examples(self, data_dir):
330
+ """See base class."""
331
+ return self._create_examples(
332
+ self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
333
+
334
+ def get_dev_examples(self, data_dir):
335
+ """See base class."""
336
+ return self._create_examples(
337
+ self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
338
+
339
+ def get_test_examples(self, data_dir):
340
+ """See base class."""
341
+ return self._create_examples(
342
+ self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
343
+
344
+ def get_labels(self):
345
+ """See base class."""
346
+ return ["0", "1"]
347
+
348
+ def _create_examples(self, lines, set_type):
349
+ """Creates examples for the training and dev sets."""
350
+ examples = []
351
+ for (i, line) in enumerate(lines):
352
+ # Only the test set has a header
353
+ if set_type == "test" and i == 0:
354
+ continue
355
+ guid = "%s-%s" % (set_type, i)
356
+ if set_type == "test":
357
+ text_a = tokenization.convert_to_unicode(line[1])
358
+ label = "0"
359
+ else:
360
+ text_a = tokenization.convert_to_unicode(line[3])
361
+ label = tokenization.convert_to_unicode(line[1])
362
+ examples.append(
363
+ InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
364
+ return examples
365
+
366
+
367
+ class WongnaiProcessor(DataProcessor):
368
+ """Processor for the Wongnai data set."""
369
+
370
+ def get_train_examples(self, data_dir):
371
+ """See base class."""
372
+ return self._create_examples(
373
+ self._read_wongnai(os.path.join(data_dir, "w_review_train.csv")), "train")
374
+
375
+ def get_test_examples(self, data_dir):
376
+ """See base class."""
377
+ return self._create_examples(
378
+ self._read_wongnai(os.path.join(data_dir, "test_file.csv")), "test")
379
+
380
+ def get_labels(self):
381
+ """See base class."""
382
+ return ["1", "2", "3", "4", "5"]
383
+
384
+ def _read_wongnai(self, input_file):
385
+ """Reads a semicolon separated value file."""
386
+ with tf.gfile.Open(input_file, "r") as f:
387
+ reader = csv.reader(f, delimiter=";")
388
+ lines = []
389
+ for line in reader:
390
+ lines.append(line)
391
+ return lines
392
+
393
+ def _create_examples(self, lines, set_type):
394
+ """Creates examples for the training and dev sets."""
395
+ examples = []
396
+ for (i, line) in enumerate(lines):
397
+ # Only the test set has a header
398
+ if set_type == "test" and i == 0:
399
+ continue
400
+ guid = "%s-%s" % (set_type, i)
401
+ if set_type == "test":
402
+ text_a = tokenization.convert_to_unicode(line[1])
403
+ label = "3"
404
+ else:
405
+ text_a = tokenization.convert_to_unicode(line[0])
406
+ label = tokenization.convert_to_unicode(line[1])
407
+ examples.append(
408
+ InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
409
+ return examples
410
+
411
+
412
+ def convert_single_example(ex_index, example, label_list, max_seq_length,
413
+ tokenizer):
414
+ """Converts a single `InputExample` into a single `InputFeatures`."""
415
+ label_map = {}
416
+ for (i, label) in enumerate(label_list):
417
+ label_map[label] = i
418
+
419
+ tokens_a = tokenizer.tokenize(example.text_a)
420
+ tokens_b = None
421
+ if example.text_b:
422
+ tokens_b = tokenizer.tokenize(example.text_b)
423
+
424
+ if tokens_b:
425
+ # Modifies `tokens_a` and `tokens_b` in place so that the total
426
+ # length is less than the specified length.
427
+ # Account for [CLS], [SEP], [SEP] with "- 3"
428
+ _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
429
+ else:
430
+ # Account for [CLS] and [SEP] with "- 2"
431
+ if len(tokens_a) > max_seq_length - 2:
432
+ tokens_a = tokens_a[0:(max_seq_length - 2)]
433
+
434
+ # The convention in BERT is:
435
+ # (a) For sequence pairs:
436
+ # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
437
+ # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
438
+ # (b) For single sequences:
439
+ # tokens: [CLS] the dog is hairy . [SEP]
440
+ # type_ids: 0 0 0 0 0 0 0
441
+ #
442
+ # Where "type_ids" are used to indicate whether this is the first
443
+ # sequence or the second sequence. The embedding vectors for `type=0` and
444
+ # `type=1` were learned during pre-training and are added to the wordpiece
445
+ # embedding vector (and position vector). This is not *strictly* necessary
446
+ # since the [SEP] token unambiguously separates the sequences, but it makes
447
+ # it easier for the model to learn the concept of sequences.
448
+ #
449
+ # For classification tasks, the first vector (corresponding to [CLS]) is
450
+ # used as as the "sentence vector". Note that this only makes sense because
451
+ # the entire model is fine-tuned.
452
+ tokens = []
453
+ segment_ids = []
454
+ tokens.append("[CLS]")
455
+ segment_ids.append(0)
456
+ for token in tokens_a:
457
+ tokens.append(token)
458
+ segment_ids.append(0)
459
+ tokens.append("[SEP]")
460
+ segment_ids.append(0)
461
+
462
+ if tokens_b:
463
+ for token in tokens_b:
464
+ tokens.append(token)
465
+ segment_ids.append(1)
466
+ tokens.append("[SEP]")
467
+ segment_ids.append(1)
468
+
469
+ input_ids = tokenizer.convert_tokens_to_ids(tokens)
470
+
471
+ # The mask has 1 for real tokens and 0 for padding tokens. Only real
472
+ # tokens are attended to.
473
+ input_mask = [1] * len(input_ids)
474
+
475
+ # Zero-pad up to the sequence length.
476
+ while len(input_ids) < max_seq_length:
477
+ input_ids.append(0)
478
+ input_mask.append(0)
479
+ segment_ids.append(0)
480
+
481
+ assert len(input_ids) == max_seq_length
482
+ assert len(input_mask) == max_seq_length
483
+ assert len(segment_ids) == max_seq_length
484
+
485
+ label_id = label_map[example.label]
486
+ if ex_index < 5:
487
+ tf.logging.info("*** Example ***")
488
+ tf.logging.info("guid: %s" % (example.guid))
489
+ tf.logging.info("tokens: %s" % " ".join(
490
+ [tokenization.printable_text(x) for x in tokens]))
491
+ tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
492
+ tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
493
+ tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
494
+ tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
495
+
496
+ feature = InputFeatures(
497
+ input_ids=input_ids,
498
+ input_mask=input_mask,
499
+ segment_ids=segment_ids,
500
+ label_id=label_id)
501
+ return feature
502
+
503
+
504
+ def file_based_convert_examples_to_features(
505
+ examples, label_list, max_seq_length, tokenizer, output_file):
506
+ """Convert a set of `InputExample`s to a TFRecord file."""
507
+
508
+ writer = tf.python_io.TFRecordWriter(output_file)
509
+
510
+ for (ex_index, example) in enumerate(examples):
511
+ if ex_index % 10000 == 0:
512
+ tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
513
+
514
+ feature = convert_single_example(ex_index, example, label_list,
515
+ max_seq_length, tokenizer)
516
+
517
+ def create_int_feature(values):
518
+ f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
519
+ return f
520
+
521
+ features = collections.OrderedDict()
522
+ features["input_ids"] = create_int_feature(feature.input_ids)
523
+ features["input_mask"] = create_int_feature(feature.input_mask)
524
+ features["segment_ids"] = create_int_feature(feature.segment_ids)
525
+ features["label_ids"] = create_int_feature([feature.label_id])
526
+
527
+ tf_example = tf.train.Example(features=tf.train.Features(feature=features))
528
+ writer.write(tf_example.SerializeToString())
529
+
530
+
531
+ def file_based_input_fn_builder(input_file, seq_length, is_training,
532
+ drop_remainder):
533
+ """Creates an `input_fn` closure to be passed to TPUEstimator."""
534
+
535
+ name_to_features = {
536
+ "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
537
+ "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
538
+ "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
539
+ "label_ids": tf.FixedLenFeature([], tf.int64),
540
+ }
541
+
542
+ def _decode_record(record, name_to_features):
543
+ """Decodes a record to a TensorFlow example."""
544
+ example = tf.parse_single_example(record, name_to_features)
545
+
546
+ # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
547
+ # So cast all int64 to int32.
548
+ for name in list(example.keys()):
549
+ t = example[name]
550
+ if t.dtype == tf.int64:
551
+ t = tf.to_int32(t)
552
+ example[name] = t
553
+
554
+ return example
555
+
556
+ def input_fn(params):
557
+ """The actual input function."""
558
+ batch_size = params["batch_size"]
559
+
560
+ # For training, we want a lot of parallel reading and shuffling.
561
+ # For eval, we want no shuffling and parallel reading doesn't matter.
562
+ d = tf.data.TFRecordDataset(input_file)
563
+ if is_training:
564
+ d = d.repeat()
565
+ d = d.shuffle(buffer_size=100)
566
+
567
+ d = d.apply(
568
+ tf.contrib.data.map_and_batch(
569
+ lambda record: _decode_record(record, name_to_features),
570
+ batch_size=batch_size,
571
+ drop_remainder=drop_remainder))
572
+
573
+ return d
574
+
575
+ return input_fn
576
+
577
+
578
+ def _truncate_seq_pair(tokens_a, tokens_b, max_length):
579
+ """Truncates a sequence pair in place to the maximum length."""
580
+
581
+ # This is a simple heuristic which will always truncate the longer sequence
582
+ # one token at a time. This makes more sense than truncating an equal percent
583
+ # of tokens from each, since if one sequence is very short then each token
584
+ # that's truncated likely contains more information than a longer sequence.
585
+ while True:
586
+ total_length = len(tokens_a) + len(tokens_b)
587
+ if total_length <= max_length:
588
+ break
589
+ if len(tokens_a) > len(tokens_b):
590
+ tokens_a.pop()
591
+ else:
592
+ tokens_b.pop()
593
+
594
+
595
+ def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
596
+ labels, num_labels, use_one_hot_embeddings):
597
+ """Creates a classification model."""
598
+ model = modeling.BertModel(
599
+ config=bert_config,
600
+ is_training=is_training,
601
+ input_ids=input_ids,
602
+ input_mask=input_mask,
603
+ token_type_ids=segment_ids,
604
+ use_one_hot_embeddings=use_one_hot_embeddings)
605
+
606
+ # In the demo, we are doing a simple classification task on the entire
607
+ # segment.
608
+ #
609
+ # If you want to use the token-level output, use model.get_sequence_output()
610
+ # instead.
611
+ output_layer = model.get_pooled_output()
612
+
613
+ hidden_size = output_layer.shape[-1].value
614
+
615
+ output_weights = tf.get_variable(
616
+ "output_weights", [num_labels, hidden_size],
617
+ initializer=tf.truncated_normal_initializer(stddev=0.02))
618
+
619
+ output_bias = tf.get_variable(
620
+ "output_bias", [num_labels], initializer=tf.zeros_initializer())
621
+
622
+ with tf.variable_scope("loss"):
623
+ if is_training:
624
+ # I.e., 0.1 dropout
625
+ output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
626
+
627
+ logits = tf.matmul(output_layer, output_weights, transpose_b=True)
628
+ logits = tf.nn.bias_add(logits, output_bias)
629
+ probabilities = tf.nn.softmax(logits, axis=-1)
630
+ log_probs = tf.nn.log_softmax(logits, axis=-1)
631
+
632
+ one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
633
+
634
+ per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
635
+ loss = tf.reduce_mean(per_example_loss)
636
+
637
+ return (loss, per_example_loss, logits, probabilities)
638
+
639
+
640
+ def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
641
+ num_train_steps, num_warmup_steps, use_tpu,
642
+ use_one_hot_embeddings):
643
+ """Returns `model_fn` closure for TPUEstimator."""
644
+
645
+ def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
646
+ """The `model_fn` for TPUEstimator."""
647
+
648
+ tf.logging.info("*** Features ***")
649
+ for name in sorted(features.keys()):
650
+ tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
651
+
652
+ input_ids = features["input_ids"]
653
+ input_mask = features["input_mask"]
654
+ segment_ids = features["segment_ids"]
655
+ label_ids = features["label_ids"]
656
+
657
+ is_training = (mode == tf.estimator.ModeKeys.TRAIN)
658
+
659
+ (total_loss, per_example_loss, logits, probabilities) = create_model(
660
+ bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
661
+ num_labels, use_one_hot_embeddings)
662
+
663
+ tvars = tf.trainable_variables()
664
+
665
+ scaffold_fn = None
666
+ if init_checkpoint:
667
+ (assignment_map, initialized_variable_names
668
+ ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
669
+ if use_tpu:
670
+
671
+ def tpu_scaffold():
672
+ tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
673
+ return tf.train.Scaffold()
674
+
675
+ scaffold_fn = tpu_scaffold
676
+ else:
677
+ tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
678
+
679
+ tf.logging.info("**** Trainable Variables ****")
680
+ for var in tvars:
681
+ init_string = ""
682
+ if var.name in initialized_variable_names:
683
+ init_string = ", *INIT_FROM_CKPT*"
684
+ tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
685
+ init_string)
686
+
687
+ output_spec = None
688
+ if mode == tf.estimator.ModeKeys.TRAIN:
689
+
690
+ train_op = optimization.create_optimizer(
691
+ total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
692
+
693
+ output_spec = tf.contrib.tpu.TPUEstimatorSpec(
694
+ mode=mode,
695
+ loss=total_loss,
696
+ train_op=train_op,
697
+ scaffold_fn=scaffold_fn)
698
+ elif mode == tf.estimator.ModeKeys.EVAL:
699
+
700
+ def metric_fn(per_example_loss, label_ids, logits):
701
+ predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
702
+ accuracy = tf.metrics.accuracy(label_ids, predictions)
703
+ loss = tf.metrics.mean(per_example_loss)
704
+ return {
705
+ "eval_accuracy": accuracy,
706
+ "eval_loss": loss,
707
+ }
708
+
709
+ eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
710
+ output_spec = tf.contrib.tpu.TPUEstimatorSpec(
711
+ mode=mode,
712
+ loss=total_loss,
713
+ eval_metrics=eval_metrics,
714
+ scaffold_fn=scaffold_fn)
715
+ else:
716
+ output_spec = tf.contrib.tpu.TPUEstimatorSpec(
717
+ mode=mode, predictions=probabilities, scaffold_fn=scaffold_fn)
718
+ return output_spec
719
+
720
+ return model_fn
721
+
722
+
723
+ # This function is not used by this file but is still used by the Colab and
724
+ # people who depend on it.
725
+ def input_fn_builder(features, seq_length, is_training, drop_remainder):
726
+ """Creates an `input_fn` closure to be passed to TPUEstimator."""
727
+
728
+ all_input_ids = []
729
+ all_input_mask = []
730
+ all_segment_ids = []
731
+ all_label_ids = []
732
+
733
+ for feature in features:
734
+ all_input_ids.append(feature.input_ids)
735
+ all_input_mask.append(feature.input_mask)
736
+ all_segment_ids.append(feature.segment_ids)
737
+ all_label_ids.append(feature.label_id)
738
+
739
+ def input_fn(params):
740
+ """The actual input function."""
741
+ batch_size = params["batch_size"]
742
+
743
+ num_examples = len(features)
744
+
745
+ # This is for demo purposes and does NOT scale to large data sets. We do
746
+ # not use Dataset.from_generator() because that uses tf.py_func which is
747
+ # not TPU compatible. The right way to load data is with TFRecordReader.
748
+ d = tf.data.Dataset.from_tensor_slices({
749
+ "input_ids":
750
+ tf.constant(
751
+ all_input_ids, shape=[num_examples, seq_length],
752
+ dtype=tf.int32),
753
+ "input_mask":
754
+ tf.constant(
755
+ all_input_mask,
756
+ shape=[num_examples, seq_length],
757
+ dtype=tf.int32),
758
+ "segment_ids":
759
+ tf.constant(
760
+ all_segment_ids,
761
+ shape=[num_examples, seq_length],
762
+ dtype=tf.int32),
763
+ "label_ids":
764
+ tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
765
+ })
766
+
767
+ if is_training:
768
+ d = d.repeat()
769
+ d = d.shuffle(buffer_size=100)
770
+
771
+ d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
772
+ return d
773
+
774
+ return input_fn
775
+
776
+
777
+ # This function is not used by this file but is still used by the Colab and
778
+ # people who depend on it.
779
+ def convert_examples_to_features(examples, label_list, max_seq_length,
780
+ tokenizer):
781
+ """Convert a set of `InputExample`s to a list of `InputFeatures`."""
782
+
783
+ features = []
784
+ for (ex_index, example) in enumerate(examples):
785
+ if ex_index % 10000 == 0:
786
+ tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
787
+
788
+ feature = convert_single_example(ex_index, example, label_list,
789
+ max_seq_length, tokenizer)
790
+
791
+ features.append(feature)
792
+ return features
793
+
794
+
795
+ def main(_):
796
+ tf.logging.set_verbosity(tf.logging.INFO)
797
+
798
+ processors = {
799
+ "cola": ColaProcessor,
800
+ "mnli": MnliProcessor,
801
+ "mrpc": MrpcProcessor,
802
+ "xnli": XnliProcessor,
803
+ "wongnai": WongnaiProcessor,
804
+ }
805
+
806
+ if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
807
+ raise ValueError(
808
+ "At least one of `do_train`, `do_eval` or `do_predict' must be True.")
809
+
810
+ bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
811
+
812
+ if FLAGS.max_seq_length > bert_config.max_position_embeddings:
813
+ raise ValueError(
814
+ "Cannot use sequence length %d because the BERT model "
815
+ "was only trained up to sequence length %d" %
816
+ (FLAGS.max_seq_length, bert_config.max_position_embeddings))
817
+
818
+ tf.gfile.MakeDirs(FLAGS.output_dir)
819
+
820
+ task_name = FLAGS.task_name.lower()
821
+
822
+ if task_name not in processors:
823
+ raise ValueError("Task not found: %s" % (task_name))
824
+
825
+ if task_name == 'xnli' and FLAGS.xnli_language:
826
+ processor = processors[task_name](FLAGS.xnli_language)
827
+ else:
828
+ processor = processors[task_name]()
829
+
830
+ label_list = processor.get_labels()
831
+
832
+ if (task_name == 'xnli' and FLAGS.xnli_language == 'th') or task_name == 'wongnai':
833
+ if not FLAGS.spm_file:
834
+ print("Please specify the SentencePiece model file by using --spm_file.")
835
+ return
836
+ tokenizer = tokenization.ThaiTokenizer(vocab_file=FLAGS.vocab_file, spm_file=FLAGS.spm_file)
837
+ else:
838
+ tokenizer = tokenization.FullTokenizer(
839
+ vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
840
+
841
+ tpu_cluster_resolver = None
842
+ if FLAGS.use_tpu and FLAGS.tpu_name:
843
+ tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
844
+ FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
845
+
846
+ is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
847
+ run_config = tf.contrib.tpu.RunConfig(
848
+ cluster=tpu_cluster_resolver,
849
+ master=FLAGS.master,
850
+ model_dir=FLAGS.output_dir,
851
+ save_checkpoints_steps=FLAGS.save_checkpoints_steps,
852
+ tpu_config=tf.contrib.tpu.TPUConfig(
853
+ iterations_per_loop=FLAGS.iterations_per_loop,
854
+ num_shards=FLAGS.num_tpu_cores,
855
+ per_host_input_for_training=is_per_host))
856
+
857
+ train_examples = None
858
+ num_train_steps = None
859
+ num_warmup_steps = None
860
+ if FLAGS.do_train:
861
+ train_examples = processor.get_train_examples(FLAGS.data_dir)
862
+ num_train_steps = int(
863
+ len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
864
+ num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
865
+
866
+ model_fn = model_fn_builder(
867
+ bert_config=bert_config,
868
+ num_labels=len(label_list),
869
+ init_checkpoint=FLAGS.init_checkpoint,
870
+ learning_rate=FLAGS.learning_rate,
871
+ num_train_steps=num_train_steps,
872
+ num_warmup_steps=num_warmup_steps,
873
+ use_tpu=FLAGS.use_tpu,
874
+ use_one_hot_embeddings=FLAGS.use_tpu)
875
+
876
+ # If TPU is not available, this will fall back to normal Estimator on CPU
877
+ # or GPU.
878
+ estimator = tf.contrib.tpu.TPUEstimator(
879
+ use_tpu=FLAGS.use_tpu,
880
+ model_fn=model_fn,
881
+ config=run_config,
882
+ train_batch_size=FLAGS.train_batch_size,
883
+ eval_batch_size=FLAGS.eval_batch_size,
884
+ predict_batch_size=FLAGS.predict_batch_size)
885
+
886
+ if FLAGS.do_train:
887
+ train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
888
+ file_based_convert_examples_to_features(
889
+ train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
890
+ tf.logging.info("***** Running training *****")
891
+ tf.logging.info(" Num examples = %d", len(train_examples))
892
+ tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
893
+ tf.logging.info(" Num steps = %d", num_train_steps)
894
+ train_input_fn = file_based_input_fn_builder(
895
+ input_file=train_file,
896
+ seq_length=FLAGS.max_seq_length,
897
+ is_training=True,
898
+ drop_remainder=True)
899
+ estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
900
+
901
+ if FLAGS.do_eval:
902
+ eval_examples = processor.get_dev_examples(FLAGS.data_dir)
903
+ eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
904
+ file_based_convert_examples_to_features(
905
+ eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)
906
+
907
+ tf.logging.info("***** Running evaluation *****")
908
+ tf.logging.info(" Num examples = %d", len(eval_examples))
909
+ tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
910
+
911
+ # This tells the estimator to run through the entire set.
912
+ eval_steps = None
913
+ # However, if running eval on the TPU, you will need to specify the
914
+ # number of steps.
915
+ if FLAGS.use_tpu:
916
+ # Eval will be slightly WRONG on the TPU because it will truncate
917
+ # the last batch.
918
+ eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size)
919
+
920
+ eval_drop_remainder = True if FLAGS.use_tpu else False
921
+ eval_input_fn = file_based_input_fn_builder(
922
+ input_file=eval_file,
923
+ seq_length=FLAGS.max_seq_length,
924
+ is_training=False,
925
+ drop_remainder=eval_drop_remainder)
926
+
927
+ result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
928
+
929
+ output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
930
+ with tf.gfile.GFile(output_eval_file, "w") as writer:
931
+ tf.logging.info("***** Eval results *****")
932
+ for key in sorted(result.keys()):
933
+ tf.logging.info(" %s = %s", key, str(result[key]))
934
+ writer.write("%s = %s\n" % (key, str(result[key])))
935
+
936
+ if FLAGS.do_predict:
937
+ predict_examples = processor.get_test_examples(FLAGS.data_dir)
938
+ predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
939
+ file_based_convert_examples_to_features(predict_examples, label_list,
940
+ FLAGS.max_seq_length, tokenizer,
941
+ predict_file)
942
+
943
+ tf.logging.info("***** Running prediction*****")
944
+ tf.logging.info(" Num examples = %d", len(predict_examples))
945
+ tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
946
+
947
+ if FLAGS.use_tpu:
948
+ # Warning: According to tpu_estimator.py Prediction on TPU is an
949
+ # experimental feature and hence not supported here
950
+ raise ValueError("Prediction in TPU not supported")
951
+
952
+ predict_drop_remainder = True if FLAGS.use_tpu else False
953
+ predict_input_fn = file_based_input_fn_builder(
954
+ input_file=predict_file,
955
+ seq_length=FLAGS.max_seq_length,
956
+ is_training=False,
957
+ drop_remainder=predict_drop_remainder)
958
+
959
+ result = estimator.predict(input_fn=predict_input_fn)
960
+
961
+ output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
962
+ with tf.gfile.GFile(output_predict_file, "w") as writer:
963
+ tf.logging.info("***** Predict results *****")
964
+ for prediction in result:
965
+ output_line = "\t".join(
966
+ str(class_probability) for class_probability in prediction) + "\n"
967
+ writer.write(output_line)
968
+
969
+
970
+ if __name__ == "__main__":
971
+ flags.mark_flag_as_required("data_dir")
972
+ flags.mark_flag_as_required("task_name")
973
+ flags.mark_flag_as_required("vocab_file")
974
+ flags.mark_flag_as_required("bert_config_file")
975
+ flags.mark_flag_as_required("output_dir")
976
+ tf.app.run()
bert/run_pretraining.py ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Run masked LM/next sentence masked_lm pre-training for BERT."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import os
22
+ import modeling
23
+ import optimization
24
+ import tensorflow as tf
25
+
26
+ flags = tf.flags
27
+
28
+ FLAGS = flags.FLAGS
29
+
30
+ ## Required parameters
31
+ flags.DEFINE_string(
32
+ "bert_config_file", None,
33
+ "The config json file corresponding to the pre-trained BERT model. "
34
+ "This specifies the model architecture.")
35
+
36
+ flags.DEFINE_string(
37
+ "input_file", None,
38
+ "Input TF example files (can be a glob or comma separated).")
39
+
40
+ flags.DEFINE_string(
41
+ "output_dir", None,
42
+ "The output directory where the model checkpoints will be written.")
43
+
44
+ ## Other parameters
45
+ flags.DEFINE_string(
46
+ "init_checkpoint", None,
47
+ "Initial checkpoint (usually from a pre-trained BERT model).")
48
+
49
+ flags.DEFINE_integer(
50
+ "max_seq_length", 128,
51
+ "The maximum total input sequence length after WordPiece tokenization. "
52
+ "Sequences longer than this will be truncated, and sequences shorter "
53
+ "than this will be padded. Must match data generation.")
54
+
55
+ flags.DEFINE_integer(
56
+ "max_predictions_per_seq", 20,
57
+ "Maximum number of masked LM predictions per sequence. "
58
+ "Must match data generation.")
59
+
60
+ flags.DEFINE_bool("do_train", False, "Whether to run training.")
61
+
62
+ flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
63
+
64
+ flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
65
+
66
+ flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
67
+
68
+ flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
69
+
70
+ flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
71
+
72
+ flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
73
+
74
+ flags.DEFINE_integer("save_checkpoints_steps", 1000,
75
+ "How often to save the model checkpoint.")
76
+
77
+ flags.DEFINE_integer("iterations_per_loop", 1000,
78
+ "How many steps to make in each estimator call.")
79
+
80
+ flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
81
+
82
+ flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
83
+
84
+ tf.flags.DEFINE_string(
85
+ "tpu_name", None,
86
+ "The Cloud TPU to use for training. This should be either the name "
87
+ "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
88
+ "url.")
89
+
90
+ tf.flags.DEFINE_string(
91
+ "tpu_zone", None,
92
+ "[Optional] GCE zone where the Cloud TPU is located in. If not "
93
+ "specified, we will attempt to automatically detect the GCE project from "
94
+ "metadata.")
95
+
96
+ tf.flags.DEFINE_string(
97
+ "gcp_project", None,
98
+ "[Optional] Project name for the Cloud TPU-enabled project. If not "
99
+ "specified, we will attempt to automatically detect the GCE project from "
100
+ "metadata.")
101
+
102
+ tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
103
+
104
+ flags.DEFINE_integer(
105
+ "num_tpu_cores", 8,
106
+ "Only used if `use_tpu` is True. Total number of TPU cores to use.")
107
+
108
+
109
+ def model_fn_builder(bert_config, init_checkpoint, learning_rate,
110
+ num_train_steps, num_warmup_steps, use_tpu,
111
+ use_one_hot_embeddings):
112
+ """Returns `model_fn` closure for TPUEstimator."""
113
+
114
+ def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
115
+ """The `model_fn` for TPUEstimator."""
116
+
117
+ tf.logging.info("*** Features ***")
118
+ for name in sorted(features.keys()):
119
+ tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
120
+
121
+ input_ids = features["input_ids"]
122
+ input_mask = features["input_mask"]
123
+ segment_ids = features["segment_ids"]
124
+ masked_lm_positions = features["masked_lm_positions"]
125
+ masked_lm_ids = features["masked_lm_ids"]
126
+ masked_lm_weights = features["masked_lm_weights"]
127
+ next_sentence_labels = features["next_sentence_labels"]
128
+
129
+ is_training = (mode == tf.estimator.ModeKeys.TRAIN)
130
+
131
+ model = modeling.BertModel(
132
+ config=bert_config,
133
+ is_training=is_training,
134
+ input_ids=input_ids,
135
+ input_mask=input_mask,
136
+ token_type_ids=segment_ids,
137
+ use_one_hot_embeddings=use_one_hot_embeddings)
138
+
139
+ (masked_lm_loss,
140
+ masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
141
+ bert_config, model.get_sequence_output(), model.get_embedding_table(),
142
+ masked_lm_positions, masked_lm_ids, masked_lm_weights)
143
+
144
+ (next_sentence_loss, next_sentence_example_loss,
145
+ next_sentence_log_probs) = get_next_sentence_output(
146
+ bert_config, model.get_pooled_output(), next_sentence_labels)
147
+
148
+ total_loss = masked_lm_loss + next_sentence_loss
149
+
150
+ tvars = tf.trainable_variables()
151
+
152
+ initialized_variable_names = {}
153
+ scaffold_fn = None
154
+ if init_checkpoint:
155
+ (assignment_map, initialized_variable_names
156
+ ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
157
+ if use_tpu:
158
+
159
+ def tpu_scaffold():
160
+ tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
161
+ return tf.train.Scaffold()
162
+
163
+ scaffold_fn = tpu_scaffold
164
+ else:
165
+ tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
166
+
167
+ tf.logging.info("**** Trainable Variables ****")
168
+ for var in tvars:
169
+ init_string = ""
170
+ if var.name in initialized_variable_names:
171
+ init_string = ", *INIT_FROM_CKPT*"
172
+ tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
173
+ init_string)
174
+
175
+ output_spec = None
176
+ if mode == tf.estimator.ModeKeys.TRAIN:
177
+ train_op = optimization.create_optimizer(
178
+ total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
179
+
180
+ output_spec = tf.contrib.tpu.TPUEstimatorSpec(
181
+ mode=mode,
182
+ loss=total_loss,
183
+ train_op=train_op,
184
+ scaffold_fn=scaffold_fn)
185
+ elif mode == tf.estimator.ModeKeys.EVAL:
186
+
187
+ def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
188
+ masked_lm_weights, next_sentence_example_loss,
189
+ next_sentence_log_probs, next_sentence_labels):
190
+ """Computes the loss and accuracy of the model."""
191
+ masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
192
+ [-1, masked_lm_log_probs.shape[-1]])
193
+ masked_lm_predictions = tf.argmax(
194
+ masked_lm_log_probs, axis=-1, output_type=tf.int32)
195
+ masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
196
+ masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
197
+ masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
198
+ masked_lm_accuracy = tf.metrics.accuracy(
199
+ labels=masked_lm_ids,
200
+ predictions=masked_lm_predictions,
201
+ weights=masked_lm_weights)
202
+ masked_lm_mean_loss = tf.metrics.mean(
203
+ values=masked_lm_example_loss, weights=masked_lm_weights)
204
+
205
+ next_sentence_log_probs = tf.reshape(
206
+ next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
207
+ next_sentence_predictions = tf.argmax(
208
+ next_sentence_log_probs, axis=-1, output_type=tf.int32)
209
+ next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
210
+ next_sentence_accuracy = tf.metrics.accuracy(
211
+ labels=next_sentence_labels, predictions=next_sentence_predictions)
212
+ next_sentence_mean_loss = tf.metrics.mean(
213
+ values=next_sentence_example_loss)
214
+
215
+ return {
216
+ "masked_lm_accuracy": masked_lm_accuracy,
217
+ "masked_lm_loss": masked_lm_mean_loss,
218
+ "next_sentence_accuracy": next_sentence_accuracy,
219
+ "next_sentence_loss": next_sentence_mean_loss,
220
+ }
221
+
222
+ eval_metrics = (metric_fn, [
223
+ masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
224
+ masked_lm_weights, next_sentence_example_loss,
225
+ next_sentence_log_probs, next_sentence_labels
226
+ ])
227
+ output_spec = tf.contrib.tpu.TPUEstimatorSpec(
228
+ mode=mode,
229
+ loss=total_loss,
230
+ eval_metrics=eval_metrics,
231
+ scaffold_fn=scaffold_fn)
232
+ else:
233
+ raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
234
+
235
+ return output_spec
236
+
237
+ return model_fn
238
+
239
+
240
+ def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
241
+ label_ids, label_weights):
242
+ """Get loss and log probs for the masked LM."""
243
+ input_tensor = gather_indexes(input_tensor, positions)
244
+
245
+ with tf.variable_scope("cls/predictions"):
246
+ # We apply one more non-linear transformation before the output layer.
247
+ # This matrix is not used after pre-training.
248
+ with tf.variable_scope("transform"):
249
+ input_tensor = tf.layers.dense(
250
+ input_tensor,
251
+ units=bert_config.hidden_size,
252
+ activation=modeling.get_activation(bert_config.hidden_act),
253
+ kernel_initializer=modeling.create_initializer(
254
+ bert_config.initializer_range))
255
+ input_tensor = modeling.layer_norm(input_tensor)
256
+
257
+ # The output weights are the same as the input embeddings, but there is
258
+ # an output-only bias for each token.
259
+ output_bias = tf.get_variable(
260
+ "output_bias",
261
+ shape=[bert_config.vocab_size],
262
+ initializer=tf.zeros_initializer())
263
+ logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
264
+ logits = tf.nn.bias_add(logits, output_bias)
265
+ log_probs = tf.nn.log_softmax(logits, axis=-1)
266
+
267
+ label_ids = tf.reshape(label_ids, [-1])
268
+ label_weights = tf.reshape(label_weights, [-1])
269
+
270
+ one_hot_labels = tf.one_hot(
271
+ label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
272
+
273
+ # The `positions` tensor might be zero-padded (if the sequence is too
274
+ # short to have the maximum number of predictions). The `label_weights`
275
+ # tensor has a value of 1.0 for every real prediction and 0.0 for the
276
+ # padding predictions.
277
+ per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
278
+ numerator = tf.reduce_sum(label_weights * per_example_loss)
279
+ denominator = tf.reduce_sum(label_weights) + 1e-5
280
+ loss = numerator / denominator
281
+
282
+ return (loss, per_example_loss, log_probs)
283
+
284
+
285
+ def get_next_sentence_output(bert_config, input_tensor, labels):
286
+ """Get loss and log probs for the next sentence prediction."""
287
+
288
+ # Simple binary classification. Note that 0 is "next sentence" and 1 is
289
+ # "random sentence". This weight matrix is not used after pre-training.
290
+ with tf.variable_scope("cls/seq_relationship"):
291
+ output_weights = tf.get_variable(
292
+ "output_weights",
293
+ shape=[2, bert_config.hidden_size],
294
+ initializer=modeling.create_initializer(bert_config.initializer_range))
295
+ output_bias = tf.get_variable(
296
+ "output_bias", shape=[2], initializer=tf.zeros_initializer())
297
+
298
+ logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
299
+ logits = tf.nn.bias_add(logits, output_bias)
300
+ log_probs = tf.nn.log_softmax(logits, axis=-1)
301
+ labels = tf.reshape(labels, [-1])
302
+ one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
303
+ per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
304
+ loss = tf.reduce_mean(per_example_loss)
305
+ return (loss, per_example_loss, log_probs)
306
+
307
+
308
+ def gather_indexes(sequence_tensor, positions):
309
+ """Gathers the vectors at the specific positions over a minibatch."""
310
+ sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
311
+ batch_size = sequence_shape[0]
312
+ seq_length = sequence_shape[1]
313
+ width = sequence_shape[2]
314
+
315
+ flat_offsets = tf.reshape(
316
+ tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
317
+ flat_positions = tf.reshape(positions + flat_offsets, [-1])
318
+ flat_sequence_tensor = tf.reshape(sequence_tensor,
319
+ [batch_size * seq_length, width])
320
+ output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
321
+ return output_tensor
322
+
323
+
324
+ def input_fn_builder(input_files,
325
+ max_seq_length,
326
+ max_predictions_per_seq,
327
+ is_training,
328
+ num_cpu_threads=4):
329
+ """Creates an `input_fn` closure to be passed to TPUEstimator."""
330
+
331
+ def input_fn(params):
332
+ """The actual input function."""
333
+ batch_size = params["batch_size"]
334
+
335
+ name_to_features = {
336
+ "input_ids":
337
+ tf.FixedLenFeature([max_seq_length], tf.int64),
338
+ "input_mask":
339
+ tf.FixedLenFeature([max_seq_length], tf.int64),
340
+ "segment_ids":
341
+ tf.FixedLenFeature([max_seq_length], tf.int64),
342
+ "masked_lm_positions":
343
+ tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
344
+ "masked_lm_ids":
345
+ tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
346
+ "masked_lm_weights":
347
+ tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
348
+ "next_sentence_labels":
349
+ tf.FixedLenFeature([1], tf.int64),
350
+ }
351
+
352
+ # For training, we want a lot of parallel reading and shuffling.
353
+ # For eval, we want no shuffling and parallel reading doesn't matter.
354
+ if is_training:
355
+ d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
356
+ d = d.repeat()
357
+ d = d.shuffle(buffer_size=len(input_files))
358
+
359
+ # `cycle_length` is the number of parallel files that get read.
360
+ cycle_length = min(num_cpu_threads, len(input_files))
361
+
362
+ # `sloppy` mode means that the interleaving is not exact. This adds
363
+ # even more randomness to the training pipeline.
364
+ d = d.apply(
365
+ tf.contrib.data.parallel_interleave(
366
+ tf.data.TFRecordDataset,
367
+ sloppy=is_training,
368
+ cycle_length=cycle_length))
369
+ d = d.shuffle(buffer_size=100)
370
+ else:
371
+ d = tf.data.TFRecordDataset(input_files)
372
+ # Since we evaluate for a fixed number of steps we don't want to encounter
373
+ # out-of-range exceptions.
374
+ d = d.repeat()
375
+
376
+ # We must `drop_remainder` on training because the TPU requires fixed
377
+ # size dimensions. For eval, we assume we are evaluating on the CPU or GPU
378
+ # and we *don't* want to drop the remainder, otherwise we wont cover
379
+ # every sample.
380
+ d = d.apply(
381
+ tf.contrib.data.map_and_batch(
382
+ lambda record: _decode_record(record, name_to_features),
383
+ batch_size=batch_size,
384
+ num_parallel_batches=num_cpu_threads,
385
+ drop_remainder=True))
386
+ return d
387
+
388
+ return input_fn
389
+
390
+
391
+ def _decode_record(record, name_to_features):
392
+ """Decodes a record to a TensorFlow example."""
393
+ example = tf.parse_single_example(record, name_to_features)
394
+
395
+ # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
396
+ # So cast all int64 to int32.
397
+ for name in list(example.keys()):
398
+ t = example[name]
399
+ if t.dtype == tf.int64:
400
+ t = tf.to_int32(t)
401
+ example[name] = t
402
+
403
+ return example
404
+
405
+
406
+ def main(_):
407
+ tf.logging.set_verbosity(tf.logging.INFO)
408
+
409
+ if not FLAGS.do_train and not FLAGS.do_eval:
410
+ raise ValueError("At least one of `do_train` or `do_eval` must be True.")
411
+
412
+ bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
413
+
414
+ tf.gfile.MakeDirs(FLAGS.output_dir)
415
+
416
+ input_files = []
417
+ for input_pattern in FLAGS.input_file.split(","):
418
+ input_files.extend(tf.gfile.Glob(input_pattern))
419
+
420
+ tf.logging.info("*** Input Files ***")
421
+ for input_file in input_files:
422
+ tf.logging.info(" %s" % input_file)
423
+
424
+ tpu_cluster_resolver = None
425
+ if FLAGS.use_tpu and FLAGS.tpu_name:
426
+ tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
427
+ FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
428
+
429
+ is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
430
+ run_config = tf.contrib.tpu.RunConfig(
431
+ cluster=tpu_cluster_resolver,
432
+ master=FLAGS.master,
433
+ model_dir=FLAGS.output_dir,
434
+ save_checkpoints_steps=FLAGS.save_checkpoints_steps,
435
+ tpu_config=tf.contrib.tpu.TPUConfig(
436
+ iterations_per_loop=FLAGS.iterations_per_loop,
437
+ num_shards=FLAGS.num_tpu_cores,
438
+ per_host_input_for_training=is_per_host))
439
+
440
+ model_fn = model_fn_builder(
441
+ bert_config=bert_config,
442
+ init_checkpoint=FLAGS.init_checkpoint,
443
+ learning_rate=FLAGS.learning_rate,
444
+ num_train_steps=FLAGS.num_train_steps,
445
+ num_warmup_steps=FLAGS.num_warmup_steps,
446
+ use_tpu=FLAGS.use_tpu,
447
+ use_one_hot_embeddings=FLAGS.use_tpu)
448
+
449
+ # If TPU is not available, this will fall back to normal Estimator on CPU
450
+ # or GPU.
451
+ estimator = tf.contrib.tpu.TPUEstimator(
452
+ use_tpu=FLAGS.use_tpu,
453
+ model_fn=model_fn,
454
+ config=run_config,
455
+ train_batch_size=FLAGS.train_batch_size,
456
+ eval_batch_size=FLAGS.eval_batch_size)
457
+
458
+ if FLAGS.do_train:
459
+ tf.logging.info("***** Running training *****")
460
+ tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
461
+ train_input_fn = input_fn_builder(
462
+ input_files=input_files,
463
+ max_seq_length=FLAGS.max_seq_length,
464
+ max_predictions_per_seq=FLAGS.max_predictions_per_seq,
465
+ is_training=True)
466
+ estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
467
+
468
+ if FLAGS.do_eval:
469
+ tf.logging.info("***** Running evaluation *****")
470
+ tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
471
+
472
+ eval_input_fn = input_fn_builder(
473
+ input_files=input_files,
474
+ max_seq_length=FLAGS.max_seq_length,
475
+ max_predictions_per_seq=FLAGS.max_predictions_per_seq,
476
+ is_training=False)
477
+
478
+ result = estimator.evaluate(
479
+ input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
480
+
481
+ output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
482
+ with tf.gfile.GFile(output_eval_file, "w") as writer:
483
+ tf.logging.info("***** Eval results *****")
484
+ for key in sorted(result.keys()):
485
+ tf.logging.info(" %s = %s", key, str(result[key]))
486
+ writer.write("%s = %s\n" % (key, str(result[key])))
487
+
488
+
489
+ if __name__ == "__main__":
490
+ flags.mark_flag_as_required("input_file")
491
+ flags.mark_flag_as_required("bert_config_file")
492
+ flags.mark_flag_as_required("output_dir")
493
+ tf.app.run()
bert/tokenization.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The Google AI Language Team Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes."""
16
+
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+ from __future__ import print_function
20
+
21
+ import collections
22
+ import unicodedata
23
+ import six
24
+ import tensorflow as tf
25
+
26
+
27
+ def convert_to_unicode(text):
28
+ """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
29
+ if six.PY3:
30
+ if isinstance(text, str):
31
+ return text
32
+ elif isinstance(text, bytes):
33
+ return text.decode("utf-8", "ignore")
34
+ else:
35
+ raise ValueError("Unsupported string type: %s" % (type(text)))
36
+ elif six.PY2:
37
+ if isinstance(text, str):
38
+ return text.decode("utf-8", "ignore")
39
+ elif isinstance(text, unicode):
40
+ return text
41
+ else:
42
+ raise ValueError("Unsupported string type: %s" % (type(text)))
43
+ else:
44
+ raise ValueError("Not running on Python2 or Python 3?")
45
+
46
+
47
+ def printable_text(text):
48
+ """Returns text encoded in a way suitable for print or `tf.logging`."""
49
+
50
+ # These functions want `str` for both Python2 and Python3, but in one case
51
+ # it's a Unicode string and in the other it's a byte string.
52
+ if six.PY3:
53
+ if isinstance(text, str):
54
+ return text
55
+ elif isinstance(text, bytes):
56
+ return text.decode("utf-8", "ignore")
57
+ else:
58
+ raise ValueError("Unsupported string type: %s" % (type(text)))
59
+ elif six.PY2:
60
+ if isinstance(text, str):
61
+ return text
62
+ elif isinstance(text, unicode):
63
+ return text.encode("utf-8")
64
+ else:
65
+ raise ValueError("Unsupported string type: %s" % (type(text)))
66
+ else:
67
+ raise ValueError("Not running on Python2 or Python 3?")
68
+
69
+
70
+ def load_vocab(vocab_file):
71
+ """Loads a vocabulary file into a dictionary."""
72
+ vocab = collections.OrderedDict()
73
+ index = 0
74
+ with tf.gfile.GFile(vocab_file, "r") as reader:
75
+ while True:
76
+ token = reader.readline()
77
+ if token.split(): token = token.split()[0] # to support SentencePiece vocab file
78
+ token = convert_to_unicode(token)
79
+ if not token:
80
+ break
81
+ token = token.strip()
82
+ vocab[token] = index
83
+ index += 1
84
+ return vocab
85
+
86
+
87
+ def convert_by_vocab(vocab, items):
88
+ """Converts a sequence of [tokens|ids] using the vocab."""
89
+ output = []
90
+ for item in items:
91
+ output.append(vocab[item])
92
+ return output
93
+
94
+
95
+ def convert_tokens_to_ids(vocab, tokens):
96
+ return convert_by_vocab(vocab, tokens)
97
+
98
+
99
+ def convert_ids_to_tokens(inv_vocab, ids):
100
+ return convert_by_vocab(inv_vocab, ids)
101
+
102
+
103
+ def whitespace_tokenize(text):
104
+ """Runs basic whitespace cleaning and splitting on a peice of text."""
105
+ text = text.strip()
106
+ if not text:
107
+ return []
108
+ tokens = text.split()
109
+ return tokens
110
+
111
+
112
+ class FullTokenizer(object):
113
+ """Runs end-to-end tokenziation."""
114
+
115
+ def __init__(self, vocab_file, do_lower_case=True):
116
+ self.vocab = load_vocab(vocab_file)
117
+ self.inv_vocab = {v: k for k, v in self.vocab.items()}
118
+ self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
119
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
120
+
121
+ def tokenize(self, text):
122
+ split_tokens = []
123
+ for token in self.basic_tokenizer.tokenize(text):
124
+ for sub_token in self.wordpiece_tokenizer.tokenize(token):
125
+ split_tokens.append(sub_token)
126
+
127
+ return split_tokens
128
+
129
+ def convert_tokens_to_ids(self, tokens):
130
+ return convert_by_vocab(self.vocab, tokens)
131
+
132
+ def convert_ids_to_tokens(self, ids):
133
+ return convert_by_vocab(self.inv_vocab, ids)
134
+
135
+
136
+ from bpe_helper import BPE
137
+ import sentencepiece as spm
138
+
139
+ class ThaiTokenizer(object):
140
+ """Tokenizes Thai texts."""
141
+
142
+ def __init__(self, vocab_file, spm_file):
143
+ self.vocab = load_vocab(vocab_file)
144
+ self.inv_vocab = {v: k for k, v in self.vocab.items()}
145
+
146
+ self.bpe = BPE(vocab_file)
147
+ self.s = spm.SentencePieceProcessor()
148
+ self.s.Load(spm_file)
149
+
150
+ def tokenize(self, text):
151
+ bpe_tokens = self.bpe.encode(text).split(' ')
152
+ spm_tokens = self.s.EncodeAsPieces(text)
153
+
154
+ tokens = bpe_tokens if len(bpe_tokens) < len(spm_tokens) else spm_tokens
155
+
156
+ split_tokens = []
157
+
158
+ for token in tokens:
159
+ new_token = token
160
+
161
+ if token.startswith('_') and not token in self.vocab:
162
+ split_tokens.append('_')
163
+ new_token = token[1:]
164
+
165
+ if not new_token in self.vocab:
166
+ split_tokens.append('<unk>')
167
+ else:
168
+ split_tokens.append(new_token)
169
+
170
+ return split_tokens
171
+
172
+ def convert_tokens_to_ids(self, tokens):
173
+ return convert_by_vocab(self.vocab, tokens)
174
+
175
+ def convert_ids_to_tokens(self, ids):
176
+ return convert_by_vocab(self.inv_vocab, ids)
177
+
178
+
179
+ class BasicTokenizer(object):
180
+ """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
181
+
182
+ def __init__(self, do_lower_case=True):
183
+ """Constructs a BasicTokenizer.
184
+
185
+ Args:
186
+ do_lower_case: Whether to lower case the input.
187
+ """
188
+ self.do_lower_case = do_lower_case
189
+
190
+ def tokenize(self, text):
191
+ """Tokenizes a piece of text."""
192
+ text = convert_to_unicode(text)
193
+ text = self._clean_text(text)
194
+
195
+ # This was added on November 1st, 2018 for the multilingual and Chinese
196
+ # models. This is also applied to the English models now, but it doesn't
197
+ # matter since the English models were not trained on any Chinese data
198
+ # and generally don't have any Chinese data in them (there are Chinese
199
+ # characters in the vocabulary because Wikipedia does have some Chinese
200
+ # words in the English Wikipedia.).
201
+ text = self._tokenize_chinese_chars(text)
202
+
203
+ orig_tokens = whitespace_tokenize(text)
204
+ split_tokens = []
205
+ for token in orig_tokens:
206
+ if self.do_lower_case:
207
+ token = token.lower()
208
+ token = self._run_strip_accents(token)
209
+ split_tokens.extend(self._run_split_on_punc(token))
210
+
211
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
212
+ return output_tokens
213
+
214
+ def _run_strip_accents(self, text):
215
+ """Strips accents from a piece of text."""
216
+ text = unicodedata.normalize("NFD", text)
217
+ output = []
218
+ for char in text:
219
+ cat = unicodedata.category(char)
220
+ if cat == "Mn":
221
+ continue
222
+ output.append(char)
223
+ return "".join(output)
224
+
225
+ def _run_split_on_punc(self, text):
226
+ """Splits punctuation on a piece of text."""
227
+ chars = list(text)
228
+ i = 0
229
+ start_new_word = True
230
+ output = []
231
+ while i < len(chars):
232
+ char = chars[i]
233
+ if _is_punctuation(char):
234
+ output.append([char])
235
+ start_new_word = True
236
+ else:
237
+ if start_new_word:
238
+ output.append([])
239
+ start_new_word = False
240
+ output[-1].append(char)
241
+ i += 1
242
+
243
+ return ["".join(x) for x in output]
244
+
245
+ def _tokenize_chinese_chars(self, text):
246
+ """Adds whitespace around any CJK character."""
247
+ output = []
248
+ for char in text:
249
+ cp = ord(char)
250
+ if self._is_chinese_char(cp):
251
+ output.append(" ")
252
+ output.append(char)
253
+ output.append(" ")
254
+ else:
255
+ output.append(char)
256
+ return "".join(output)
257
+
258
+ def _is_chinese_char(self, cp):
259
+ """Checks whether CP is the codepoint of a CJK character."""
260
+ # This defines a "chinese character" as anything in the CJK Unicode block:
261
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
262
+ #
263
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
264
+ # despite its name. The modern Korean Hangul alphabet is a different block,
265
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
266
+ # space-separated words, so they are not treated specially and handled
267
+ # like the all of the other languages.
268
+ if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
269
+ (cp >= 0x3400 and cp <= 0x4DBF) or #
270
+ (cp >= 0x20000 and cp <= 0x2A6DF) or #
271
+ (cp >= 0x2A700 and cp <= 0x2B73F) or #
272
+ (cp >= 0x2B740 and cp <= 0x2B81F) or #
273
+ (cp >= 0x2B820 and cp <= 0x2CEAF) or
274
+ (cp >= 0xF900 and cp <= 0xFAFF) or #
275
+ (cp >= 0x2F800 and cp <= 0x2FA1F)): #
276
+ return True
277
+
278
+ return False
279
+
280
+ def _clean_text(self, text):
281
+ """Performs invalid character removal and whitespace cleanup on text."""
282
+ output = []
283
+ for char in text:
284
+ cp = ord(char)
285
+ if cp == 0 or cp == 0xfffd or _is_control(char):
286
+ continue
287
+ if _is_whitespace(char):
288
+ output.append(" ")
289
+ else:
290
+ output.append(char)
291
+ return "".join(output)
292
+
293
+
294
+ class WordpieceTokenizer(object):
295
+ """Runs WordPiece tokenziation."""
296
+
297
+ def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
298
+ self.vocab = vocab
299
+ self.unk_token = unk_token
300
+ self.max_input_chars_per_word = max_input_chars_per_word
301
+
302
+ def tokenize(self, text):
303
+ """Tokenizes a piece of text into its word pieces.
304
+
305
+ This uses a greedy longest-match-first algorithm to perform tokenization
306
+ using the given vocabulary.
307
+
308
+ For example:
309
+ input = "unaffable"
310
+ output = ["un", "##aff", "##able"]
311
+
312
+ Args:
313
+ text: A single token or whitespace separated tokens. This should have
314
+ already been passed through `BasicTokenizer.
315
+
316
+ Returns:
317
+ A list of wordpiece tokens.
318
+ """
319
+
320
+ text = convert_to_unicode(text)
321
+
322
+ output_tokens = []
323
+ for token in whitespace_tokenize(text):
324
+ chars = list(token)
325
+ if len(chars) > self.max_input_chars_per_word:
326
+ output_tokens.append(self.unk_token)
327
+ continue
328
+
329
+ is_bad = False
330
+ start = 0
331
+ sub_tokens = []
332
+ while start < len(chars):
333
+ end = len(chars)
334
+ cur_substr = None
335
+ while start < end:
336
+ substr = "".join(chars[start:end])
337
+ if start > 0:
338
+ substr = "##" + substr
339
+ if substr in self.vocab:
340
+ cur_substr = substr
341
+ break
342
+ end -= 1
343
+ if cur_substr is None:
344
+ is_bad = True
345
+ break
346
+ sub_tokens.append(cur_substr)
347
+ start = end
348
+
349
+ if is_bad:
350
+ output_tokens.append(self.unk_token)
351
+ else:
352
+ output_tokens.extend(sub_tokens)
353
+ return output_tokens
354
+
355
+
356
+ def _is_whitespace(char):
357
+ """Checks whether `chars` is a whitespace character."""
358
+ # \t, \n, and \r are technically contorl characters but we treat them
359
+ # as whitespace since they are generally considered as such.
360
+ if char == " " or char == "\t" or char == "\n" or char == "\r":
361
+ return True
362
+ cat = unicodedata.category(char)
363
+ if cat == "Zs":
364
+ return True
365
+ return False
366
+
367
+
368
+ def _is_control(char):
369
+ """Checks whether `chars` is a control character."""
370
+ # These are technically control characters but we count them as whitespace
371
+ # characters.
372
+ if char == "\t" or char == "\n" or char == "\r":
373
+ return False
374
+ cat = unicodedata.category(char)
375
+ if cat.startswith("C"):
376
+ return True
377
+ return False
378
+
379
+
380
+ def _is_punctuation(char):
381
+ """Checks whether `chars` is a punctuation character."""
382
+ cp = ord(char)
383
+ # We treat all non-letter/number ASCII as punctuation.
384
+ # Characters such as "^", "$", and "`" are not in the Unicode
385
+ # Punctuation class but we treat them as punctuation anyways, for
386
+ # consistency.
387
+ if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
388
+ (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
389
+ return True
390
+ cat = unicodedata.category(char)
391
+ if cat.startswith("P"):
392
+ return True
393
+ return False