Spaces:
Runtime error
Runtime error
# The contents of this file are automatically written by | |
# tools/generate_schema_wrapper.py. Do not modify directly. | |
import collections | |
import contextlib | |
import inspect | |
import json | |
import textwrap | |
from typing import ( | |
Any, | |
Sequence, | |
List, | |
Dict, | |
Optional, | |
DefaultDict, | |
Tuple, | |
Iterable, | |
Type, | |
) | |
from itertools import zip_longest | |
import jsonschema | |
import jsonschema.exceptions | |
import jsonschema.validators | |
import numpy as np | |
import pandas as pd | |
from altair import vegalite | |
ValidationErrorList = List[jsonschema.exceptions.ValidationError] | |
GroupedValidationErrors = Dict[str, ValidationErrorList] | |
# If DEBUG_MODE is True, then schema objects are converted to dict and | |
# validated at creation time. This slows things down, particularly for | |
# larger specs, but leads to much more useful tracebacks for the user. | |
# Individual schema classes can override this by setting the | |
# class-level _class_is_valid_at_instantiation attribute to False | |
DEBUG_MODE = True | |
def enable_debug_mode(): | |
global DEBUG_MODE | |
DEBUG_MODE = True | |
def disable_debug_mode(): | |
global DEBUG_MODE | |
DEBUG_MODE = False | |
def debug_mode(arg): | |
global DEBUG_MODE | |
original = DEBUG_MODE | |
DEBUG_MODE = arg | |
try: | |
yield | |
finally: | |
DEBUG_MODE = original | |
def validate_jsonschema( | |
spec: Dict[str, Any], | |
schema: Dict[str, Any], | |
rootschema: Optional[Dict[str, Any]] = None, | |
raise_error: bool = True, | |
) -> Optional[jsonschema.exceptions.ValidationError]: | |
"""Validates the passed in spec against the schema in the context of the | |
rootschema. If any errors are found, they are deduplicated and prioritized | |
and only the most relevant errors are kept. Errors are then either raised | |
or returned, depending on the value of `raise_error`. | |
""" | |
errors = _get_errors_from_spec(spec, schema, rootschema=rootschema) | |
if errors: | |
leaf_errors = _get_leaves_of_error_tree(errors) | |
grouped_errors = _group_errors_by_json_path(leaf_errors) | |
grouped_errors = _subset_to_most_specific_json_paths(grouped_errors) | |
grouped_errors = _deduplicate_errors(grouped_errors) | |
# Nothing special about this first error but we need to choose one | |
# which can be raised | |
main_error = list(grouped_errors.values())[0][0] | |
# All errors are then attached as a new attribute to ValidationError so that | |
# they can be used in SchemaValidationError to craft a more helpful | |
# error message. Setting a new attribute like this is not ideal as | |
# it then no longer matches the type ValidationError. It would be better | |
# to refactor this function to never raise but only return errors. | |
main_error._all_errors = grouped_errors # type: ignore[attr-defined] | |
if raise_error: | |
raise main_error | |
else: | |
return main_error | |
else: | |
return None | |
def _get_errors_from_spec( | |
spec: Dict[str, Any], | |
schema: Dict[str, Any], | |
rootschema: Optional[Dict[str, Any]] = None, | |
) -> ValidationErrorList: | |
"""Uses the relevant jsonschema validator to validate the passed in spec | |
against the schema using the rootschema to resolve references. | |
The schema and rootschema themselves are not validated but instead considered | |
as valid. | |
""" | |
# We don't use jsonschema.validate as this would validate the schema itself. | |
# Instead, we pass the schema directly to the validator class. This is done for | |
# two reasons: The schema comes from Vega-Lite and is not based on the user | |
# input, therefore there is no need to validate it in the first place. Furthermore, | |
# the "uri-reference" format checker fails for some of the references as URIs in | |
# "$ref" are not encoded, | |
# e.g. '#/definitions/ValueDefWithCondition<MarkPropFieldOrDatumDef, | |
# (Gradient|string|null)>' would be a valid $ref in a Vega-Lite schema but | |
# it is not a valid URI reference due to the characters such as '<'. | |
if rootschema is not None: | |
validator_cls = jsonschema.validators.validator_for(rootschema) | |
resolver = jsonschema.RefResolver.from_schema(rootschema) | |
else: | |
validator_cls = jsonschema.validators.validator_for(schema) | |
# No resolver is necessary if the schema is already the full schema | |
resolver = None | |
validator_kwargs = {"resolver": resolver} | |
if hasattr(validator_cls, "FORMAT_CHECKER"): | |
validator_kwargs["format_checker"] = validator_cls.FORMAT_CHECKER | |
validator = validator_cls(schema, **validator_kwargs) | |
errors = list(validator.iter_errors(spec)) | |
return errors | |
def _json_path(err: jsonschema.exceptions.ValidationError) -> str: | |
"""Drop in replacement for the .json_path property of the jsonschema | |
ValidationError class, which is not available as property for | |
ValidationError with jsonschema<4.0.1. | |
More info, see https://github.com/altair-viz/altair/issues/3038 | |
""" | |
path = "$" | |
for elem in err.absolute_path: | |
if isinstance(elem, int): | |
path += "[" + str(elem) + "]" | |
else: | |
path += "." + elem | |
return path | |
def _group_errors_by_json_path( | |
errors: ValidationErrorList, | |
) -> GroupedValidationErrors: | |
"""Groups errors by the `json_path` attribute of the jsonschema ValidationError | |
class. This attribute contains the path to the offending element within | |
a chart specification and can therefore be considered as an identifier of an | |
'issue' in the chart that needs to be fixed. | |
""" | |
errors_by_json_path = collections.defaultdict(list) | |
for err in errors: | |
err_key = getattr(err, "json_path", _json_path(err)) | |
errors_by_json_path[err_key].append(err) | |
return dict(errors_by_json_path) | |
def _get_leaves_of_error_tree( | |
errors: ValidationErrorList, | |
) -> ValidationErrorList: | |
"""For each error in `errors`, it traverses down the "error tree" that is generated | |
by the jsonschema library to find and return all "leaf" errors. These are errors | |
which have no further errors that caused it and so they are the most specific errors | |
with the most specific error messages. | |
""" | |
leaves: ValidationErrorList = [] | |
for err in errors: | |
if err.context: | |
# This means that the error `err` was caused by errors in subschemas. | |
# The list of errors from the subschemas are available in the property | |
# `context`. | |
leaves.extend(_get_leaves_of_error_tree(err.context)) | |
else: | |
leaves.append(err) | |
return leaves | |
def _subset_to_most_specific_json_paths( | |
errors_by_json_path: GroupedValidationErrors, | |
) -> GroupedValidationErrors: | |
"""Removes key (json path), value (errors) pairs where the json path is fully | |
contained in another json path. For example if `errors_by_json_path` has two | |
keys, `$.encoding.X` and `$.encoding.X.tooltip`, then the first one will be removed | |
and only the second one is returned. This is done under the assumption that | |
more specific json paths give more helpful error messages to the user. | |
""" | |
errors_by_json_path_specific: GroupedValidationErrors = {} | |
for json_path, errors in errors_by_json_path.items(): | |
if not _contained_at_start_of_one_of_other_values( | |
json_path, list(errors_by_json_path.keys()) | |
): | |
errors_by_json_path_specific[json_path] = errors | |
return errors_by_json_path_specific | |
def _contained_at_start_of_one_of_other_values(x: str, values: Sequence[str]) -> bool: | |
# Does not count as "contained at start of other value" if the values are | |
# the same. These cases should be handled separately | |
return any(value.startswith(x) for value in values if x != value) | |
def _deduplicate_errors( | |
grouped_errors: GroupedValidationErrors, | |
) -> GroupedValidationErrors: | |
"""Some errors have very similar error messages or are just in general not helpful | |
for a user. This function removes as many of these cases as possible and | |
can be extended over time to handle new cases that come up. | |
""" | |
grouped_errors_deduplicated: GroupedValidationErrors = {} | |
for json_path, element_errors in grouped_errors.items(): | |
errors_by_validator = _group_errors_by_validator(element_errors) | |
deduplication_functions = { | |
"enum": _deduplicate_enum_errors, | |
"additionalProperties": _deduplicate_additional_properties_errors, | |
} | |
deduplicated_errors: ValidationErrorList = [] | |
for validator, errors in errors_by_validator.items(): | |
deduplication_func = deduplication_functions.get(validator, None) | |
if deduplication_func is not None: | |
errors = deduplication_func(errors) | |
deduplicated_errors.extend(_deduplicate_by_message(errors)) | |
# Removes any ValidationError "'value' is a required property" as these | |
# errors are unlikely to be the relevant ones for the user. They come from | |
# validation against a schema definition where the output of `alt.value` | |
# would be valid. However, if a user uses `alt.value`, the `value` keyword | |
# is included automatically from that function and so it's unlikely | |
# that this was what the user intended if the keyword is not present | |
# in the first place. | |
deduplicated_errors = [ | |
err for err in deduplicated_errors if not _is_required_value_error(err) | |
] | |
grouped_errors_deduplicated[json_path] = deduplicated_errors | |
return grouped_errors_deduplicated | |
def _is_required_value_error(err: jsonschema.exceptions.ValidationError) -> bool: | |
return err.validator == "required" and err.validator_value == ["value"] | |
def _group_errors_by_validator(errors: ValidationErrorList) -> GroupedValidationErrors: | |
"""Groups the errors by the json schema "validator" that casued the error. For | |
example if the error is that a value is not one of an enumeration in the json schema | |
then the "validator" is `"enum"`, if the error is due to an unknown property that | |
was set although no additional properties are allowed then "validator" is | |
`"additionalProperties`, etc. | |
""" | |
errors_by_validator: DefaultDict[ | |
str, ValidationErrorList | |
] = collections.defaultdict(list) | |
for err in errors: | |
# Ignore mypy error as err.validator as it wrongly sees err.validator | |
# as of type Optional[Validator] instead of str which it is according | |
# to the documentation and all tested cases | |
errors_by_validator[err.validator].append(err) # type: ignore[index] | |
return dict(errors_by_validator) | |
def _deduplicate_enum_errors(errors: ValidationErrorList) -> ValidationErrorList: | |
"""Deduplicate enum errors by removing the errors where the allowed values | |
are a subset of another error. For example, if `enum` contains two errors | |
and one has `validator_value` (i.e. accepted values) ["A", "B"] and the | |
other one ["A", "B", "C"] then the first one is removed and the final | |
`enum` list only contains the error with ["A", "B", "C"]. | |
""" | |
if len(errors) > 1: | |
# Values (and therefore `validator_value`) of an enum are always arrays, | |
# see https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values | |
# which is why we can use join below | |
value_strings = [",".join(err.validator_value) for err in errors] | |
longest_enums: ValidationErrorList = [] | |
for value_str, err in zip(value_strings, errors): | |
if not _contained_at_start_of_one_of_other_values(value_str, value_strings): | |
longest_enums.append(err) | |
errors = longest_enums | |
return errors | |
def _deduplicate_additional_properties_errors( | |
errors: ValidationErrorList, | |
) -> ValidationErrorList: | |
"""If there are multiple additional property errors it usually means that | |
the offending element was validated against multiple schemas and | |
its parent is a common anyOf validator. | |
The error messages produced from these cases are usually | |
very similar and we just take the shortest one. For example, | |
the following 3 errors are raised for the `unknown` channel option in | |
`alt.X("variety", unknown=2)`: | |
- "Additional properties are not allowed ('unknown' was unexpected)" | |
- "Additional properties are not allowed ('field', 'unknown' were unexpected)" | |
- "Additional properties are not allowed ('field', 'type', 'unknown' were unexpected)" | |
""" | |
if len(errors) > 1: | |
# Test if all parent errors are the same anyOf error and only do | |
# the prioritization in these cases. Can't think of a chart spec where this | |
# would not be the case but still allow for it below to not break anything. | |
parent = errors[0].parent | |
if ( | |
parent is not None | |
and parent.validator == "anyOf" | |
# Use [1:] as don't have to check for first error as it was used | |
# above to define `parent` | |
and all(err.parent is parent for err in errors[1:]) | |
): | |
errors = [min(errors, key=lambda x: len(x.message))] | |
return errors | |
def _deduplicate_by_message(errors: ValidationErrorList) -> ValidationErrorList: | |
"""Deduplicate errors by message. This keeps the original order in case | |
it was chosen intentionally. | |
""" | |
return list({e.message: e for e in errors}.values()) | |
def _subclasses(cls): | |
"""Breadth-first sequence of all classes which inherit from cls.""" | |
seen = set() | |
current_set = {cls} | |
while current_set: | |
seen |= current_set | |
current_set = set.union(*(set(cls.__subclasses__()) for cls in current_set)) | |
for cls in current_set - seen: | |
yield cls | |
def _todict(obj, context): | |
"""Convert an object to a dict representation.""" | |
if isinstance(obj, SchemaBase): | |
return obj.to_dict(validate=False, context=context) | |
elif isinstance(obj, (list, tuple, np.ndarray)): | |
return [_todict(v, context) for v in obj] | |
elif isinstance(obj, dict): | |
return {k: _todict(v, context) for k, v in obj.items() if v is not Undefined} | |
elif hasattr(obj, "to_dict"): | |
return obj.to_dict() | |
elif isinstance(obj, np.number): | |
return float(obj) | |
elif isinstance(obj, (pd.Timestamp, np.datetime64)): | |
return pd.Timestamp(obj).isoformat() | |
else: | |
return obj | |
def _resolve_references(schema, root=None): | |
"""Resolve schema references.""" | |
resolver = jsonschema.RefResolver.from_schema(root or schema) | |
while "$ref" in schema: | |
with resolver.resolving(schema["$ref"]) as resolved: | |
schema = resolved | |
return schema | |
class SchemaValidationError(jsonschema.ValidationError): | |
"""A wrapper for jsonschema.ValidationError with friendlier traceback""" | |
def __init__(self, obj: "SchemaBase", err: jsonschema.ValidationError) -> None: | |
super().__init__(**err._contents()) | |
self.obj = obj | |
self._errors: GroupedValidationErrors = getattr( | |
err, "_all_errors", {getattr(err, "json_path", _json_path(err)): [err]} | |
) | |
# This is the message from err | |
self._original_message = self.message | |
self.message = self._get_message() | |
def __str__(self) -> str: | |
return self.message | |
def _get_message(self) -> str: | |
def indent_second_line_onwards(message: str, indent: int = 4) -> str: | |
modified_lines: List[str] = [] | |
for idx, line in enumerate(message.split("\n")): | |
if idx > 0 and len(line) > 0: | |
line = " " * indent + line | |
modified_lines.append(line) | |
return "\n".join(modified_lines) | |
error_messages: List[str] = [] | |
# Only show a maximum of 3 errors as else the final message returned by this | |
# method could get very long. | |
for errors in list(self._errors.values())[:3]: | |
error_messages.append(self._get_message_for_errors_group(errors)) | |
message = "" | |
if len(error_messages) > 1: | |
error_messages = [ | |
indent_second_line_onwards(f"Error {error_id}: {m}") | |
for error_id, m in enumerate(error_messages, start=1) | |
] | |
message += "Multiple errors were found.\n\n" | |
message += "\n\n".join(error_messages) | |
return message | |
def _get_message_for_errors_group( | |
self, | |
errors: ValidationErrorList, | |
) -> str: | |
if errors[0].validator == "additionalProperties": | |
# During development, we only found cases where an additionalProperties | |
# error was raised if that was the only error for the offending instance | |
# as identifiable by the json path. Therefore, we just check here the first | |
# error. However, other constellations might exist in which case | |
# this should be adapted so that other error messages are shown as well. | |
message = self._get_additional_properties_error_message(errors[0]) | |
else: | |
message = self._get_default_error_message(errors=errors) | |
return message.strip() | |
def _get_additional_properties_error_message( | |
self, | |
error: jsonschema.exceptions.ValidationError, | |
) -> str: | |
"""Output all existing parameters when an unknown parameter is specified.""" | |
altair_cls = self._get_altair_class_for_error(error) | |
param_dict_keys = inspect.signature(altair_cls).parameters.keys() | |
param_names_table = self._format_params_as_table(param_dict_keys) | |
# Error messages for these errors look like this: | |
# "Additional properties are not allowed ('unknown' was unexpected)" | |
# Line below extracts "unknown" from this string | |
parameter_name = error.message.split("('")[-1].split("'")[0] | |
message = f"""\ | |
`{altair_cls.__name__}` has no parameter named '{parameter_name}' | |
Existing parameter names are: | |
{param_names_table} | |
See the help for `{altair_cls.__name__}` to read the full description of these parameters""" | |
return message | |
def _get_altair_class_for_error( | |
self, error: jsonschema.exceptions.ValidationError | |
) -> Type["SchemaBase"]: | |
"""Try to get the lowest class possible in the chart hierarchy so | |
it can be displayed in the error message. This should lead to more informative | |
error messages pointing the user closer to the source of the issue. | |
""" | |
for prop_name in reversed(error.absolute_path): | |
# Check if str as e.g. first item can be a 0 | |
if isinstance(prop_name, str): | |
potential_class_name = prop_name[0].upper() + prop_name[1:] | |
cls = getattr(vegalite, potential_class_name, None) | |
if cls is not None: | |
break | |
else: | |
# Did not find a suitable class based on traversing the path so we fall | |
# back on the class of the top-level object which created | |
# the SchemaValidationError | |
cls = self.obj.__class__ | |
return cls | |
def _format_params_as_table(param_dict_keys: Iterable[str]) -> str: | |
"""Format param names into a table so that they are easier to read""" | |
param_names: Tuple[str, ...] | |
name_lengths: Tuple[int, ...] | |
param_names, name_lengths = zip( # type: ignore[assignment] # Mypy does think it's Tuple[Any] | |
*[ | |
(name, len(name)) | |
for name in param_dict_keys | |
if name not in ["kwds", "self"] | |
] | |
) | |
# Worst case scenario with the same longest param name in the same | |
# row for all columns | |
max_name_length = max(name_lengths) | |
max_column_width = 80 | |
# Output a square table if not too big (since it is easier to read) | |
num_param_names = len(param_names) | |
square_columns = int(np.ceil(num_param_names**0.5)) | |
columns = min(max_column_width // max_name_length, square_columns) | |
# Compute roughly equal column heights to evenly divide the param names | |
def split_into_equal_parts(n: int, p: int) -> List[int]: | |
return [n // p + 1] * (n % p) + [n // p] * (p - n % p) | |
column_heights = split_into_equal_parts(num_param_names, columns) | |
# Section the param names into columns and compute their widths | |
param_names_columns: List[Tuple[str, ...]] = [] | |
column_max_widths: List[int] = [] | |
last_end_idx: int = 0 | |
for ch in column_heights: | |
param_names_columns.append(param_names[last_end_idx : last_end_idx + ch]) | |
column_max_widths.append( | |
max([len(param_name) for param_name in param_names_columns[-1]]) | |
) | |
last_end_idx = ch + last_end_idx | |
# Transpose the param name columns into rows to facilitate looping | |
param_names_rows: List[Tuple[str, ...]] = [] | |
for li in zip_longest(*param_names_columns, fillvalue=""): | |
param_names_rows.append(li) | |
# Build the table as a string by iterating over and formatting the rows | |
param_names_table: str = "" | |
for param_names_row in param_names_rows: | |
for num, param_name in enumerate(param_names_row): | |
# Set column width based on the longest param in the column | |
max_name_length_column = column_max_widths[num] | |
column_pad = 3 | |
param_names_table += "{:<{}}".format( | |
param_name, max_name_length_column + column_pad | |
) | |
# Insert newlines and spacing after the last element in each row | |
if num == (len(param_names_row) - 1): | |
param_names_table += "\n" | |
return param_names_table | |
def _get_default_error_message( | |
self, | |
errors: ValidationErrorList, | |
) -> str: | |
bullet_points: List[str] = [] | |
errors_by_validator = _group_errors_by_validator(errors) | |
if "enum" in errors_by_validator: | |
for error in errors_by_validator["enum"]: | |
bullet_points.append(f"one of {error.validator_value}") | |
if "type" in errors_by_validator: | |
types = [f"'{err.validator_value}'" for err in errors_by_validator["type"]] | |
point = "of type " | |
if len(types) == 1: | |
point += types[0] | |
elif len(types) == 2: | |
point += f"{types[0]} or {types[1]}" | |
else: | |
point += ", ".join(types[:-1]) + f", or {types[-1]}" | |
bullet_points.append(point) | |
# It should not matter which error is specifically used as they are all | |
# about the same offending instance (i.e. invalid value), so we can just | |
# take the first one | |
error = errors[0] | |
# Add a summary line when parameters are passed an invalid value | |
# For example: "'asdf' is an invalid value for `stack` | |
message = f"'{error.instance}' is an invalid value" | |
if error.absolute_path: | |
message += f" for `{error.absolute_path[-1]}`" | |
# Add bullet points | |
if len(bullet_points) == 0: | |
message += ".\n\n" | |
elif len(bullet_points) == 1: | |
message += f". Valid values are {bullet_points[0]}.\n\n" | |
else: | |
# We don't use .capitalize below to make the first letter uppercase | |
# as that makes the rest of the message lowercase | |
bullet_points = [point[0].upper() + point[1:] for point in bullet_points] | |
message += ". Valid values are:\n\n" | |
message += "\n".join([f"- {point}" for point in bullet_points]) | |
message += "\n\n" | |
# Add unformatted messages of any remaining errors which were not | |
# considered so far. This is not expected to be used but more exists | |
# as a fallback for cases which were not known during development. | |
for validator, errors in errors_by_validator.items(): | |
if validator not in ("enum", "type"): | |
message += "\n".join([e.message for e in errors]) | |
return message | |
class UndefinedType: | |
"""A singleton object for marking undefined parameters""" | |
__instance = None | |
def __new__(cls, *args, **kwargs): | |
if not isinstance(cls.__instance, cls): | |
cls.__instance = object.__new__(cls, *args, **kwargs) | |
return cls.__instance | |
def __repr__(self): | |
return "Undefined" | |
# In the future Altair may implement a more complete set of type hints. | |
# But for now, we'll add an annotation to indicate that the type checker | |
# should permit any value passed to a function argument whose default | |
# value is Undefined. | |
Undefined: Any = UndefinedType() | |
class SchemaBase: | |
"""Base class for schema wrappers. | |
Each derived class should set the _schema class attribute (and optionally | |
the _rootschema class attribute) which is used for validation. | |
""" | |
_schema: Optional[Dict[str, Any]] = None | |
_rootschema: Optional[Dict[str, Any]] = None | |
_class_is_valid_at_instantiation = True | |
def __init__(self, *args, **kwds): | |
# Two valid options for initialization, which should be handled by | |
# derived classes: | |
# - a single arg with no kwds, for, e.g. {'type': 'string'} | |
# - zero args with zero or more kwds for {'type': 'object'} | |
if self._schema is None: | |
raise ValueError( | |
"Cannot instantiate object of type {}: " | |
"_schema class attribute is not defined." | |
"".format(self.__class__) | |
) | |
if kwds: | |
assert len(args) == 0 | |
else: | |
assert len(args) in [0, 1] | |
# use object.__setattr__ because we override setattr below. | |
object.__setattr__(self, "_args", args) | |
object.__setattr__(self, "_kwds", kwds) | |
if DEBUG_MODE and self._class_is_valid_at_instantiation: | |
self.to_dict(validate=True) | |
def copy(self, deep=True, ignore=()): | |
"""Return a copy of the object | |
Parameters | |
---------- | |
deep : boolean or list, optional | |
If True (default) then return a deep copy of all dict, list, and | |
SchemaBase objects within the object structure. | |
If False, then only copy the top object. | |
If a list or iterable, then only copy the listed attributes. | |
ignore : list, optional | |
A list of keys for which the contents should not be copied, but | |
only stored by reference. | |
""" | |
def _shallow_copy(obj): | |
if isinstance(obj, SchemaBase): | |
return obj.copy(deep=False) | |
elif isinstance(obj, list): | |
return obj[:] | |
elif isinstance(obj, dict): | |
return obj.copy() | |
else: | |
return obj | |
def _deep_copy(obj, ignore=()): | |
if isinstance(obj, SchemaBase): | |
args = tuple(_deep_copy(arg) for arg in obj._args) | |
kwds = { | |
k: (_deep_copy(v, ignore=ignore) if k not in ignore else v) | |
for k, v in obj._kwds.items() | |
} | |
with debug_mode(False): | |
return obj.__class__(*args, **kwds) | |
elif isinstance(obj, list): | |
return [_deep_copy(v, ignore=ignore) for v in obj] | |
elif isinstance(obj, dict): | |
return { | |
k: (_deep_copy(v, ignore=ignore) if k not in ignore else v) | |
for k, v in obj.items() | |
} | |
else: | |
return obj | |
try: | |
deep = list(deep) | |
except TypeError: | |
deep_is_list = False | |
else: | |
deep_is_list = True | |
if deep and not deep_is_list: | |
return _deep_copy(self, ignore=ignore) | |
with debug_mode(False): | |
copy = self.__class__(*self._args, **self._kwds) | |
if deep_is_list: | |
for attr in deep: | |
copy[attr] = _shallow_copy(copy._get(attr)) | |
return copy | |
def _get(self, attr, default=Undefined): | |
"""Get an attribute, returning default if not present.""" | |
attr = self._kwds.get(attr, Undefined) | |
if attr is Undefined: | |
attr = default | |
return attr | |
def __getattr__(self, attr): | |
# reminder: getattr is called after the normal lookups | |
if attr == "_kwds": | |
raise AttributeError() | |
if attr in self._kwds: | |
return self._kwds[attr] | |
else: | |
try: | |
_getattr = super(SchemaBase, self).__getattr__ | |
except AttributeError: | |
_getattr = super(SchemaBase, self).__getattribute__ | |
return _getattr(attr) | |
def __setattr__(self, item, val): | |
self._kwds[item] = val | |
def __getitem__(self, item): | |
return self._kwds[item] | |
def __setitem__(self, item, val): | |
self._kwds[item] = val | |
def __repr__(self): | |
if self._kwds: | |
args = ( | |
"{}: {!r}".format(key, val) | |
for key, val in sorted(self._kwds.items()) | |
if val is not Undefined | |
) | |
args = "\n" + ",\n".join(args) | |
return "{0}({{{1}\n}})".format( | |
self.__class__.__name__, args.replace("\n", "\n ") | |
) | |
else: | |
return "{}({!r})".format(self.__class__.__name__, self._args[0]) | |
def __eq__(self, other): | |
return ( | |
type(self) is type(other) | |
and self._args == other._args | |
and self._kwds == other._kwds | |
) | |
def to_dict(self, validate=True, ignore=None, context=None): | |
"""Return a dictionary representation of the object | |
Parameters | |
---------- | |
validate : boolean | |
If True (default), then validate the output dictionary | |
against the schema. | |
ignore : list | |
A list of keys to ignore. This will *not* passed to child to_dict | |
function calls. | |
context : dict (optional) | |
A context dictionary that will be passed to all child to_dict | |
function calls | |
Returns | |
------- | |
dct : dictionary | |
The dictionary representation of this object | |
Raises | |
------ | |
jsonschema.ValidationError : | |
if validate=True and the dict does not conform to the schema | |
""" | |
if context is None: | |
context = {} | |
if ignore is None: | |
ignore = [] | |
if self._args and not self._kwds: | |
result = _todict(self._args[0], context=context) | |
elif not self._args: | |
kwds = self._kwds.copy() | |
# parsed_shorthand is added by FieldChannelMixin. | |
# It's used below to replace shorthand with its long form equivalent | |
# parsed_shorthand is removed from context if it exists so that it is | |
# not passed to child to_dict function calls | |
parsed_shorthand = context.pop("parsed_shorthand", {}) | |
# Prevent that pandas categorical data is automatically sorted | |
# when a non-ordinal data type is specifed manually | |
# or if the encoding channel does not support sorting | |
if "sort" in parsed_shorthand and ( | |
"sort" not in kwds or kwds["type"] not in ["ordinal", Undefined] | |
): | |
parsed_shorthand.pop("sort") | |
kwds.update( | |
{ | |
k: v | |
for k, v in parsed_shorthand.items() | |
if kwds.get(k, Undefined) is Undefined | |
} | |
) | |
kwds = { | |
k: v for k, v in kwds.items() if k not in list(ignore) + ["shorthand"] | |
} | |
if "mark" in kwds and isinstance(kwds["mark"], str): | |
kwds["mark"] = {"type": kwds["mark"]} | |
result = _todict( | |
kwds, | |
context=context, | |
) | |
else: | |
raise ValueError( | |
"{} instance has both a value and properties : " | |
"cannot serialize to dict".format(self.__class__) | |
) | |
if validate: | |
try: | |
self.validate(result) | |
except jsonschema.ValidationError as err: | |
# We do not raise `from err` as else the resulting | |
# traceback is very long as it contains part | |
# of the Vega-Lite schema. It would also first | |
# show the less helpful ValidationError instead of | |
# the more user friendly SchemaValidationError | |
raise SchemaValidationError(self, err) from None | |
return result | |
def to_json( | |
self, | |
validate=True, | |
ignore=None, | |
context=None, | |
indent=2, | |
sort_keys=True, | |
**kwargs, | |
): | |
"""Emit the JSON representation for this object as a string. | |
Parameters | |
---------- | |
validate : boolean | |
If True (default), then validate the output dictionary | |
against the schema. | |
ignore : list (optional) | |
A list of keys to ignore. This will *not* passed to child to_dict | |
function calls. | |
context : dict (optional) | |
A context dictionary that will be passed to all child to_dict | |
function calls | |
indent : integer, default 2 | |
the number of spaces of indentation to use | |
sort_keys : boolean, default True | |
if True, sort keys in the output | |
**kwargs | |
Additional keyword arguments are passed to ``json.dumps()`` | |
Returns | |
------- | |
spec : string | |
The JSON specification of the chart object. | |
""" | |
if ignore is None: | |
ignore = [] | |
if context is None: | |
context = {} | |
dct = self.to_dict(validate=validate, ignore=ignore, context=context) | |
return json.dumps(dct, indent=indent, sort_keys=sort_keys, **kwargs) | |
def _default_wrapper_classes(cls): | |
"""Return the set of classes used within cls.from_dict()""" | |
return _subclasses(SchemaBase) | |
def from_dict(cls, dct, validate=True, _wrapper_classes=None): | |
"""Construct class from a dictionary representation | |
Parameters | |
---------- | |
dct : dictionary | |
The dict from which to construct the class | |
validate : boolean | |
If True (default), then validate the input against the schema. | |
_wrapper_classes : list (optional) | |
The set of SchemaBase classes to use when constructing wrappers | |
of the dict inputs. If not specified, the result of | |
cls._default_wrapper_classes will be used. | |
Returns | |
------- | |
obj : Schema object | |
The wrapped schema | |
Raises | |
------ | |
jsonschema.ValidationError : | |
if validate=True and dct does not conform to the schema | |
""" | |
if validate: | |
cls.validate(dct) | |
if _wrapper_classes is None: | |
_wrapper_classes = cls._default_wrapper_classes() | |
converter = _FromDict(_wrapper_classes) | |
return converter.from_dict(dct, cls) | |
def from_json(cls, json_string, validate=True, **kwargs): | |
"""Instantiate the object from a valid JSON string | |
Parameters | |
---------- | |
json_string : string | |
The string containing a valid JSON chart specification. | |
validate : boolean | |
If True (default), then validate the input against the schema. | |
**kwargs : | |
Additional keyword arguments are passed to json.loads | |
Returns | |
------- | |
chart : Chart object | |
The altair Chart object built from the specification. | |
""" | |
dct = json.loads(json_string, **kwargs) | |
return cls.from_dict(dct, validate=validate) | |
def validate(cls, instance, schema=None): | |
""" | |
Validate the instance against the class schema in the context of the | |
rootschema. | |
""" | |
if schema is None: | |
schema = cls._schema | |
return validate_jsonschema( | |
instance, schema, rootschema=cls._rootschema or cls._schema | |
) | |
def resolve_references(cls, schema=None): | |
"""Resolve references in the context of this object's schema or root schema.""" | |
return _resolve_references( | |
schema=(schema or cls._schema), | |
root=(cls._rootschema or cls._schema or schema), | |
) | |
def validate_property(cls, name, value, schema=None): | |
""" | |
Validate a property against property schema in the context of the | |
rootschema | |
""" | |
value = _todict(value, context={}) | |
props = cls.resolve_references(schema or cls._schema).get("properties", {}) | |
return validate_jsonschema( | |
value, props.get(name, {}), rootschema=cls._rootschema or cls._schema | |
) | |
def __dir__(self): | |
return sorted(super().__dir__() + list(self._kwds.keys())) | |
def _passthrough(*args, **kwds): | |
return args[0] if args else kwds | |
class _FromDict: | |
"""Class used to construct SchemaBase class hierarchies from a dict | |
The primary purpose of using this class is to be able to build a hash table | |
that maps schemas to their wrapper classes. The candidate classes are | |
specified in the ``class_list`` argument to the constructor. | |
""" | |
_hash_exclude_keys = ("definitions", "title", "description", "$schema", "id") | |
def __init__(self, class_list): | |
# Create a mapping of a schema hash to a list of matching classes | |
# This lets us quickly determine the correct class to construct | |
self.class_dict = collections.defaultdict(list) | |
for cls in class_list: | |
if cls._schema is not None: | |
self.class_dict[self.hash_schema(cls._schema)].append(cls) | |
def hash_schema(cls, schema, use_json=True): | |
""" | |
Compute a python hash for a nested dictionary which | |
properly handles dicts, lists, sets, and tuples. | |
At the top level, the function excludes from the hashed schema all keys | |
listed in `exclude_keys`. | |
This implements two methods: one based on conversion to JSON, and one based | |
on recursive conversions of unhashable to hashable types; the former seems | |
to be slightly faster in several benchmarks. | |
""" | |
if cls._hash_exclude_keys and isinstance(schema, dict): | |
schema = { | |
key: val | |
for key, val in schema.items() | |
if key not in cls._hash_exclude_keys | |
} | |
if use_json: | |
s = json.dumps(schema, sort_keys=True) | |
return hash(s) | |
else: | |
def _freeze(val): | |
if isinstance(val, dict): | |
return frozenset((k, _freeze(v)) for k, v in val.items()) | |
elif isinstance(val, set): | |
return frozenset(map(_freeze, val)) | |
elif isinstance(val, list) or isinstance(val, tuple): | |
return tuple(map(_freeze, val)) | |
else: | |
return val | |
return hash(_freeze(schema)) | |
def from_dict( | |
self, dct, cls=None, schema=None, rootschema=None, default_class=_passthrough | |
): | |
"""Construct an object from a dict representation""" | |
if (schema is None) == (cls is None): | |
raise ValueError("Must provide either cls or schema, but not both.") | |
if schema is None: | |
schema = schema or cls._schema | |
rootschema = rootschema or cls._rootschema | |
rootschema = rootschema or schema | |
if isinstance(dct, SchemaBase): | |
return dct | |
if cls is None: | |
# If there are multiple matches, we use the first one in the dict. | |
# Our class dict is constructed breadth-first from top to bottom, | |
# so the first class that matches is the most general match. | |
matches = self.class_dict[self.hash_schema(schema)] | |
if matches: | |
cls = matches[0] | |
else: | |
cls = default_class | |
schema = _resolve_references(schema, rootschema) | |
if "anyOf" in schema or "oneOf" in schema: | |
schemas = schema.get("anyOf", []) + schema.get("oneOf", []) | |
for possible_schema in schemas: | |
try: | |
validate_jsonschema(dct, possible_schema, rootschema=rootschema) | |
except jsonschema.ValidationError: | |
continue | |
else: | |
return self.from_dict( | |
dct, | |
schema=possible_schema, | |
rootschema=rootschema, | |
default_class=cls, | |
) | |
if isinstance(dct, dict): | |
# TODO: handle schemas for additionalProperties/patternProperties | |
props = schema.get("properties", {}) | |
kwds = {} | |
for key, val in dct.items(): | |
if key in props: | |
val = self.from_dict(val, schema=props[key], rootschema=rootschema) | |
kwds[key] = val | |
return cls(**kwds) | |
elif isinstance(dct, list): | |
item_schema = schema.get("items", {}) | |
dct = [ | |
self.from_dict(val, schema=item_schema, rootschema=rootschema) | |
for val in dct | |
] | |
return cls(dct) | |
else: | |
return cls(dct) | |
class _PropertySetter: | |
def __init__(self, prop, schema): | |
self.prop = prop | |
self.schema = schema | |
def __get__(self, obj, cls): | |
self.obj = obj | |
self.cls = cls | |
# The docs from the encoding class parameter (e.g. `bin` in X, Color, | |
# etc); this provides a general description of the parameter. | |
self.__doc__ = self.schema["description"].replace("__", "**") | |
property_name = f"{self.prop}"[0].upper() + f"{self.prop}"[1:] | |
if hasattr(vegalite, property_name): | |
altair_prop = getattr(vegalite, property_name) | |
# Add the docstring from the helper class (e.g. `BinParams`) so | |
# that all the parameter names of the helper class are included in | |
# the final docstring | |
parameter_index = altair_prop.__doc__.find("Parameters\n") | |
if parameter_index > -1: | |
self.__doc__ = ( | |
altair_prop.__doc__[:parameter_index].replace(" ", "") | |
+ self.__doc__ | |
+ textwrap.dedent( | |
f"\n\n {altair_prop.__doc__[parameter_index:]}" | |
) | |
) | |
# For short docstrings such as Aggregate, Stack, et | |
else: | |
self.__doc__ = ( | |
altair_prop.__doc__.replace(" ", "") + "\n" + self.__doc__ | |
) | |
# Add signatures and tab completion for the method and parameter names | |
self.__signature__ = inspect.signature(altair_prop) | |
self.__wrapped__ = inspect.getfullargspec(altair_prop) | |
self.__name__ = altair_prop.__name__ | |
else: | |
# It seems like bandPosition is the only parameter that doesn't | |
# have a helper class. | |
pass | |
return self | |
def __call__(self, *args, **kwargs): | |
obj = self.obj.copy() | |
# TODO: use schema to validate | |
obj[self.prop] = args[0] if args else kwargs | |
return obj | |
def with_property_setters(cls): | |
""" | |
Decorator to add property setters to a Schema class. | |
""" | |
schema = cls.resolve_references() | |
for prop, propschema in schema.get("properties", {}).items(): | |
setattr(cls, prop, _PropertySetter(prop, propschema)) | |
return cls | |