SungBeom's picture
Upload folder using huggingface_hub
4a51346
raw
history blame
11.1 kB
import pytest
import logging
import hypothesis.strategies as st
from typing import Set, cast, Union, DefaultDict
from dataclasses import dataclass
from chromadb.api.types import ID, Include, IDs
import chromadb.errors as errors
from chromadb.api import API
from chromadb.api.models.Collection import Collection
import chromadb.test.property.strategies as strategies
from hypothesis.stateful import (
Bundle,
RuleBasedStateMachine,
MultipleResults,
rule,
initialize,
precondition,
consumes,
run_state_machine_as_test,
multiple,
invariant,
)
from collections import defaultdict
import chromadb.test.property.invariants as invariants
import numpy as np
traces: DefaultDict[str, int] = defaultdict(lambda: 0)
def trace(key: str) -> None:
global traces
traces[key] += 1
def print_traces() -> None:
global traces
for key, value in traces.items():
print(f"{key}: {value}")
dtype_shared_st: st.SearchStrategy[
Union[np.float16, np.float32, np.float64]
] = st.shared(st.sampled_from(strategies.float_types), key="dtype")
dimension_shared_st: st.SearchStrategy[int] = st.shared(
st.integers(min_value=2, max_value=2048), key="dimension"
)
@dataclass
class EmbeddingStateMachineStates:
initialize = "initialize"
add_embeddings = "add_embeddings"
delete_by_ids = "delete_by_ids"
update_embeddings = "update_embeddings"
upsert_embeddings = "upsert_embeddings"
collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll")
class EmbeddingStateMachine(RuleBasedStateMachine):
collection: Collection
embedding_ids: Bundle[ID] = Bundle("embedding_ids")
def __init__(self, api: API):
super().__init__()
self.api = api
self._rules_strategy = strategies.DeterministicRuleStrategy(self) # type: ignore
@initialize(collection=collection_st) # type: ignore
def initialize(self, collection: strategies.Collection):
self.api.reset()
self.collection = self.api.create_collection(
name=collection.name,
metadata=collection.metadata,
embedding_function=collection.embedding_function,
)
self.embedding_function = collection.embedding_function
trace("init")
self.on_state_change(EmbeddingStateMachineStates.initialize)
self.record_set_state = strategies.StateMachineRecordSet(
ids=[], metadatas=[], documents=[], embeddings=[]
)
@rule(target=embedding_ids, record_set=strategies.recordsets(collection_st))
def add_embeddings(self, record_set: strategies.RecordSet) -> MultipleResults[ID]:
trace("add_embeddings")
self.on_state_change(EmbeddingStateMachineStates.add_embeddings)
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
if len(normalized_record_set["ids"]) > 0:
trace("add_more_embeddings")
if set(normalized_record_set["ids"]).intersection(
set(self.record_set_state["ids"])
):
with pytest.raises(errors.IDAlreadyExistsError):
self.collection.add(**normalized_record_set)
return multiple()
else:
self.collection.add(**normalized_record_set)
self._upsert_embeddings(cast(strategies.RecordSet, normalized_record_set))
return multiple(*normalized_record_set["ids"])
@precondition(lambda self: len(self.record_set_state["ids"]) > 20)
@rule(ids=st.lists(consumes(embedding_ids), min_size=1, max_size=20))
def delete_by_ids(self, ids: IDs) -> None:
trace("remove embeddings")
self.on_state_change(EmbeddingStateMachineStates.delete_by_ids)
indices_to_remove = [self.record_set_state["ids"].index(id) for id in ids]
self.collection.delete(ids=ids)
self._remove_embeddings(set(indices_to_remove))
# Removing the precondition causes the tests to frequently fail as "unsatisfiable"
# Using a value < 5 causes retries and lowers the number of valid samples
@precondition(lambda self: len(self.record_set_state["ids"]) >= 5)
@rule(
record_set=strategies.recordsets(
collection_strategy=collection_st,
id_strategy=embedding_ids,
min_size=1,
max_size=5,
)
)
def update_embeddings(self, record_set: strategies.RecordSet) -> None:
trace("update embeddings")
self.on_state_change(EmbeddingStateMachineStates.update_embeddings)
self.collection.update(**record_set)
self._upsert_embeddings(record_set)
# Using a value < 3 causes more retries and lowers the number of valid samples
@precondition(lambda self: len(self.record_set_state["ids"]) >= 3)
@rule(
record_set=strategies.recordsets(
collection_strategy=collection_st,
id_strategy=st.one_of(embedding_ids, strategies.safe_text),
min_size=1,
max_size=5,
)
)
def upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
trace("upsert embeddings")
self.on_state_change(EmbeddingStateMachineStates.upsert_embeddings)
self.collection.upsert(**record_set)
self._upsert_embeddings(record_set)
@invariant()
def count(self) -> None:
invariants.count(
self.collection, cast(strategies.RecordSet, self.record_set_state)
)
@invariant()
def no_duplicates(self) -> None:
invariants.no_duplicates(self.collection)
@invariant()
def ann_accuracy(self) -> None:
invariants.ann_accuracy(
collection=self.collection,
record_set=cast(strategies.RecordSet, self.record_set_state),
min_recall=0.95,
embedding_function=self.embedding_function,
)
def _upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
record_set
)
for idx, id in enumerate(normalized_record_set["ids"]):
# Update path
if id in self.record_set_state["ids"]:
target_idx = self.record_set_state["ids"].index(id)
if normalized_record_set["embeddings"] is not None:
self.record_set_state["embeddings"][
target_idx
] = normalized_record_set["embeddings"][idx]
else:
assert normalized_record_set["documents"] is not None
assert self.embedding_function is not None
self.record_set_state["embeddings"][
target_idx
] = self.embedding_function(
[normalized_record_set["documents"][idx]]
)[
0
]
if normalized_record_set["metadatas"] is not None:
self.record_set_state["metadatas"][
target_idx
] = normalized_record_set["metadatas"][idx]
if normalized_record_set["documents"] is not None:
self.record_set_state["documents"][
target_idx
] = normalized_record_set["documents"][idx]
else:
# Add path
self.record_set_state["ids"].append(id)
if normalized_record_set["embeddings"] is not None:
self.record_set_state["embeddings"].append(
normalized_record_set["embeddings"][idx]
)
else:
assert self.embedding_function is not None
assert normalized_record_set["documents"] is not None
self.record_set_state["embeddings"].append(
self.embedding_function(
[normalized_record_set["documents"][idx]]
)[0]
)
if normalized_record_set["metadatas"] is not None:
self.record_set_state["metadatas"].append(
normalized_record_set["metadatas"][idx]
)
else:
self.record_set_state["metadatas"].append(None)
if normalized_record_set["documents"] is not None:
self.record_set_state["documents"].append(
normalized_record_set["documents"][idx]
)
else:
self.record_set_state["documents"].append(None)
def _remove_embeddings(self, indices_to_remove: Set[int]) -> None:
indices_list = list(indices_to_remove)
indices_list.sort(reverse=True)
for i in indices_list:
del self.record_set_state["ids"][i]
del self.record_set_state["embeddings"][i]
del self.record_set_state["metadatas"][i]
del self.record_set_state["documents"][i]
def on_state_change(self, new_state: str) -> None:
pass
def test_embeddings_state(caplog: pytest.LogCaptureFixture, api: API) -> None:
caplog.set_level(logging.ERROR)
run_state_machine_as_test(lambda: EmbeddingStateMachine(api)) # type: ignore
print_traces()
def test_multi_add(api: API) -> None:
api.reset()
coll = api.create_collection(name="foo")
coll.add(ids=["a"], embeddings=[[0.0]])
assert coll.count() == 1
with pytest.raises(errors.IDAlreadyExistsError):
coll.add(ids=["a"], embeddings=[[0.0]])
assert coll.count() == 1
results = coll.get()
assert results["ids"] == ["a"]
coll.delete(ids=["a"])
assert coll.count() == 0
def test_dup_add(api: API) -> None:
api.reset()
coll = api.create_collection(name="foo")
with pytest.raises(errors.DuplicateIDError):
coll.add(ids=["a", "a"], embeddings=[[0.0], [1.1]])
with pytest.raises(errors.DuplicateIDError):
coll.upsert(ids=["a", "a"], embeddings=[[0.0], [1.1]])
def test_query_without_add(api: API) -> None:
api.reset()
coll = api.create_collection(name="foo")
fields: Include = ["documents", "metadatas", "embeddings", "distances"]
N = np.random.randint(1, 2000)
K = np.random.randint(1, 100)
results = coll.query(
query_embeddings=np.random.random((N, K)).tolist(), include=fields
)
for field in fields:
field_results = results[field]
assert field_results is not None
assert all([len(result) == 0 for result in field_results])
# TODO: Use SQL escaping correctly internally
@pytest.mark.xfail(reason="We don't properly escape SQL internally, causing problems")
def test_escape_chars_in_ids(api: API) -> None:
api.reset()
id = "\x1f"
coll = api.create_collection(name="foo")
coll.add(ids=[id], embeddings=[[0.0]])
assert coll.count() == 1
coll.delete(ids=[id])
assert coll.count() == 0