Spaces:
Runtime error
Runtime error
File size: 18,662 Bytes
4a51346 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import hashlib
import hypothesis
import hypothesis.strategies as st
from typing import Any, Optional, List, Dict, Union
from typing_extensions import TypedDict
import numpy as np
import numpy.typing as npt
import chromadb.api.types as types
import re
from hypothesis.strategies._internal.strategies import SearchStrategy
from hypothesis.errors import InvalidDefinition
from hypothesis.stateful import RuleBasedStateMachine
from dataclasses import dataclass
from chromadb.api.types import Documents, Embeddings, Metadata
# Set the random seed for reproducibility
np.random.seed(0) # unnecessary, hypothesis does this for us
# See Hypothesis documentation for creating strategies at
# https://hypothesis.readthedocs.io/en/latest/data.html
# NOTE: Because these strategies are used in state machines, we need to
# work around an issue with state machines, in which strategies that frequently
# are marked as invalid (i.e. through the use of `assume` or `.filter`) can cause the
# state machine tests to fail with an hypothesis.errors.Unsatisfiable.
# Ultimately this is because the entire state machine is run as a single Hypothesis
# example, which ends up drawing from the same strategies an enormous number of times.
# Whenever a strategy marks itself as invalid, Hypothesis tries to start the entire
# state machine run over. See https://github.com/HypothesisWorks/hypothesis/issues/3618
# Because strategy generation is all interrelated, seemingly small changes (especially
# ones called early in a test) can have an outside effect. Generating lists with
# unique=True, or dictionaries with a min size seems especially bad.
# Please make changes to these strategies incrementally, testing to make sure they don't
# start generating unsatisfiable examples.
test_hnsw_config = {
"hnsw:construction_ef": 128,
"hnsw:search_ef": 128,
"hnsw:M": 128,
}
class RecordSet(TypedDict):
"""
A generated set of embeddings, ids, metadatas, and documents that
represent what a user would pass to the API.
"""
ids: Union[types.ID, List[types.ID]]
embeddings: Optional[Union[types.Embeddings, types.Embedding]]
metadatas: Optional[Union[List[types.Metadata], types.Metadata]]
documents: Optional[Union[List[types.Document], types.Document]]
class NormalizedRecordSet(TypedDict):
"""
A RecordSet, with all fields normalized to lists.
"""
ids: List[types.ID]
embeddings: Optional[types.Embeddings]
metadatas: Optional[List[types.Metadata]]
documents: Optional[List[types.Document]]
class StateMachineRecordSet(TypedDict):
"""
Represents the internal state of a state machine in hypothesis tests.
"""
ids: List[types.ID]
embeddings: types.Embeddings
metadatas: List[Optional[types.Metadata]]
documents: List[Optional[types.Document]]
class Record(TypedDict):
"""
A single generated record.
"""
id: types.ID
embedding: Optional[types.Embedding]
metadata: Optional[types.Metadata]
document: Optional[types.Document]
# TODO: support arbitrary text everywhere so we don't SQL-inject ourselves.
# TODO: support empty strings everywhere
sql_alphabet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_"
safe_text = st.text(alphabet=sql_alphabet, min_size=1)
# Workaround for FastAPI json encoding peculiarities
# https://github.com/tiangolo/fastapi/blob/8ac8d70d52bb0dd9eb55ba4e22d3e383943da05c/fastapi/encoders.py#L104
safe_text = safe_text.filter(lambda s: not s.startswith("_sa"))
safe_integers = st.integers(
min_value=-(2**31), max_value=2**31 - 1
) # TODO: handle longs
safe_floats = st.floats(
allow_infinity=False,
allow_nan=False,
allow_subnormal=False,
min_value=-1e6,
max_value=1e6,
) # TODO: handle infinity and NAN
safe_values: List[SearchStrategy[Union[int, float, str]]] = [
safe_text,
safe_integers,
safe_floats,
]
def one_or_both(
strategy_a: st.SearchStrategy[Any], strategy_b: st.SearchStrategy[Any]
) -> st.SearchStrategy[Any]:
return st.one_of(
st.tuples(strategy_a, strategy_b),
st.tuples(strategy_a, st.none()),
st.tuples(st.none(), strategy_b),
)
# Temporarily generate only these to avoid SQL formatting issues.
legal_id_characters = (
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_./+"
)
float_types = [np.float16, np.float32, np.float64]
int_types = [np.int16, np.int32, np.int64] # TODO: handle int types
@st.composite
def collection_name(draw: st.DrawFn) -> str:
_collection_name_re = re.compile(r"^[a-zA-Z][a-zA-Z0-9-]{1,60}[a-zA-Z0-9]$")
_ipv4_address_re = re.compile(r"^([0-9]{1,3}\.){3}[0-9]{1,3}$")
_two_periods_re = re.compile(r"\.\.")
name: str = draw(st.from_regex(_collection_name_re))
hypothesis.assume(not _ipv4_address_re.match(name))
hypothesis.assume(not _two_periods_re.search(name))
return name
collection_metadata = st.one_of(
st.none(), st.dictionaries(safe_text, st.one_of(*safe_values))
)
# TODO: Use a hypothesis strategy while maintaining embedding uniqueness
# Or handle duplicate embeddings within a known epsilon
def create_embeddings(
dim: int,
count: int,
dtype: npt.DTypeLike,
) -> types.Embeddings:
embeddings: types.Embeddings = (
np.random.uniform(
low=-1.0,
high=1.0,
size=(count, dim),
)
.astype(dtype)
.tolist()
)
return embeddings
class hashing_embedding_function(types.EmbeddingFunction):
def __init__(self, dim: int, dtype: npt.DTypeLike) -> None:
self.dim = dim
self.dtype = dtype
def __call__(self, texts: types.Documents) -> types.Embeddings:
# Hash the texts and convert to hex strings
hashed_texts = [
list(hashlib.sha256(text.encode("utf-8")).hexdigest()) for text in texts
]
# Pad with repetition, or truncate the hex strings to the desired dimension
padded_texts = [
text * (self.dim // len(text)) + text[: self.dim % len(text)]
for text in hashed_texts
]
# Convert the hex strings to dtype
embeddings: types.Embeddings = np.array(
[[int(char, 16) / 15.0 for char in text] for text in padded_texts],
dtype=self.dtype,
).tolist()
return embeddings
class not_implemented_embedding_function(types.EmbeddingFunction):
def __call__(self, texts: Documents) -> Embeddings:
assert False, "This embedding function is not implemented"
def embedding_function_strategy(
dim: int, dtype: npt.DTypeLike
) -> st.SearchStrategy[types.EmbeddingFunction]:
return st.just(hashing_embedding_function(dim, dtype))
@dataclass
class Collection:
name: str
metadata: Optional[types.Metadata]
dimension: int
dtype: npt.DTypeLike
known_metadata_keys: types.Metadata
known_document_keywords: List[str]
has_documents: bool = False
has_embeddings: bool = False
embedding_function: Optional[types.EmbeddingFunction] = None
@st.composite
def collections(
draw: st.DrawFn,
add_filterable_data: bool = False,
with_hnsw_params: bool = False,
has_embeddings: Optional[bool] = None,
has_documents: Optional[bool] = None,
) -> Collection:
"""Strategy to generate a Collection object. If add_filterable_data is True, then known_metadata_keys and known_document_keywords will be populated with consistent data."""
assert not ((has_embeddings is False) and (has_documents is False))
name = draw(collection_name())
metadata = draw(collection_metadata)
dimension = draw(st.integers(min_value=2, max_value=2048))
dtype = draw(st.sampled_from(float_types))
if with_hnsw_params:
if metadata is None:
metadata = {}
metadata.update(test_hnsw_config)
# Sometimes, select a space at random
if draw(st.booleans()):
# TODO: pull the distance functions from a source of truth that lives not
# in tests once https://github.com/chroma-core/issues/issues/61 lands
metadata["hnsw:space"] = draw(st.sampled_from(["cosine", "l2", "ip"]))
known_metadata_keys: Dict[str, Union[int, str, float]] = {}
if add_filterable_data:
while len(known_metadata_keys) < 5:
key = draw(safe_text)
known_metadata_keys[key] = draw(st.one_of(*safe_values))
if has_documents is None:
has_documents = draw(st.booleans())
assert has_documents is not None
if has_documents and add_filterable_data:
known_document_keywords = draw(st.lists(safe_text, min_size=5, max_size=5))
else:
known_document_keywords = []
if not has_documents:
has_embeddings = True
else:
if has_embeddings is None:
has_embeddings = draw(st.booleans())
assert has_embeddings is not None
embedding_function = draw(embedding_function_strategy(dimension, dtype))
return Collection(
name=name,
metadata=metadata,
dimension=dimension,
dtype=dtype,
known_metadata_keys=known_metadata_keys,
has_documents=has_documents,
known_document_keywords=known_document_keywords,
has_embeddings=has_embeddings,
embedding_function=embedding_function,
)
@st.composite
def metadata(draw: st.DrawFn, collection: Collection) -> types.Metadata:
"""Strategy for generating metadata that could be a part of the given collection"""
# First draw a random dictionary.
metadata: types.Metadata = draw(st.dictionaries(safe_text, st.one_of(*safe_values)))
# Then, remove keys that overlap with the known keys for the coll
# to avoid type errors when comparing.
if collection.known_metadata_keys:
for key in collection.known_metadata_keys.keys():
if key in metadata:
del metadata[key]
# Finally, add in some of the known keys for the collection
sampling_dict: Dict[str, st.SearchStrategy[Union[str, int, float]]] = {
k: st.just(v) for k, v in collection.known_metadata_keys.items()
}
metadata.update(draw(st.fixed_dictionaries({}, optional=sampling_dict)))
return metadata
@st.composite
def document(draw: st.DrawFn, collection: Collection) -> types.Document:
"""Strategy for generating documents that could be a part of the given collection"""
if collection.known_document_keywords:
known_words_st = st.sampled_from(collection.known_document_keywords)
else:
known_words_st = st.text(min_size=1)
random_words_st = st.text(min_size=1)
words = draw(st.lists(st.one_of(known_words_st, random_words_st), min_size=1))
return " ".join(words)
@st.composite
def recordsets(
draw: st.DrawFn,
collection_strategy: SearchStrategy[Collection] = collections(),
id_strategy: SearchStrategy[str] = safe_text,
min_size: int = 1,
max_size: int = 50,
) -> RecordSet:
collection = draw(collection_strategy)
ids = list(
draw(st.lists(id_strategy, min_size=min_size, max_size=max_size, unique=True))
)
embeddings: Optional[Embeddings] = None
if collection.has_embeddings:
embeddings = create_embeddings(collection.dimension, len(ids), collection.dtype)
metadatas = draw(
st.lists(metadata(collection), min_size=len(ids), max_size=len(ids))
)
documents: Optional[Documents] = None
if collection.has_documents:
documents = draw(
st.lists(document(collection), min_size=len(ids), max_size=len(ids))
)
# in the case where we have a single record, sometimes exercise
# the code that handles individual values rather than lists.
# In this case, any field may be a list or a single value.
if len(ids) == 1:
single_id: Union[str, List[str]] = ids[0] if draw(st.booleans()) else ids
single_embedding = (
embeddings[0]
if embeddings is not None and draw(st.booleans())
else embeddings
)
single_metadata: Union[Metadata, List[Metadata]] = (
metadatas[0] if draw(st.booleans()) else metadatas
)
single_document = (
documents[0] if documents is not None and draw(st.booleans()) else documents
)
return {
"ids": single_id,
"embeddings": single_embedding,
"metadatas": single_metadata,
"documents": single_document,
}
return {
"ids": ids,
"embeddings": embeddings,
"metadatas": metadatas,
"documents": documents,
}
# This class is mostly cloned from from hypothesis.stateful.RuleStrategy,
# but always runs all the rules, instead of using a FeatureStrategy to
# enable/disable rules. Disabled rules cause the entire test to be marked invalida and,
# combined with the complexity of our other strategies, leads to an
# unacceptably increased incidence of hypothesis.errors.Unsatisfiable.
class DeterministicRuleStrategy(SearchStrategy): # type: ignore
def __init__(self, machine: RuleBasedStateMachine) -> None:
super().__init__() # type: ignore
self.machine = machine
self.rules = list(machine.rules()) # type: ignore
# The order is a bit arbitrary. Primarily we're trying to group rules
# that write to the same location together, and to put rules with no
# target first as they have less effect on the structure. We order from
# fewer to more arguments on grounds that it will plausibly need less
# data. This probably won't work especially well and we could be
# smarter about it, but it's better than just doing it in definition
# order.
self.rules.sort(
key=lambda rule: (
sorted(rule.targets),
len(rule.arguments),
rule.function.__name__,
)
)
def __repr__(self) -> str:
return "{}(machine={}({{...}}))".format(
self.__class__.__name__,
self.machine.__class__.__name__,
)
def do_draw(self, data): # type: ignore
if not any(self.is_valid(rule) for rule in self.rules):
msg = f"No progress can be made from state {self.machine!r}"
raise InvalidDefinition(msg) from None
rule = data.draw(st.sampled_from([r for r in self.rules if self.is_valid(r)]))
argdata = data.draw(rule.arguments_strategy)
return (rule, argdata)
def is_valid(self, rule) -> bool: # type: ignore
if not all(precond(self.machine) for precond in rule.preconditions):
return False
for b in rule.bundles:
bundle = self.machine.bundle(b.name) # type: ignore
if not bundle:
return False
return True
@st.composite
def where_clause(draw: st.DrawFn, collection: Collection) -> types.Where:
"""Generate a filter that could be used in a query against the given collection"""
known_keys = sorted(collection.known_metadata_keys.keys())
key = draw(st.sampled_from(known_keys))
value = collection.known_metadata_keys[key]
legal_ops: List[Optional[str]] = [None, "$eq", "$ne"]
if not isinstance(value, str):
legal_ops.extend(["$gt", "$lt", "$lte", "$gte"])
if isinstance(value, float):
# Add or subtract a small number to avoid floating point rounding errors
value = value + draw(st.sampled_from([1e-6, -1e-6]))
op: types.WhereOperator = draw(st.sampled_from(legal_ops))
if op is None:
return {key: value}
else:
return {key: {op: value}}
@st.composite
def where_doc_clause(draw: st.DrawFn, collection: Collection) -> types.WhereDocument:
"""Generate a where_document filter that could be used against the given collection"""
if collection.known_document_keywords:
word = draw(st.sampled_from(collection.known_document_keywords))
else:
word = draw(safe_text)
return {"$contains": word}
def binary_operator_clause(
base_st: SearchStrategy[types.Where],
) -> SearchStrategy[types.Where]:
op: SearchStrategy[types.LogicalOperator] = st.sampled_from(["$and", "$or"])
return st.dictionaries(
keys=op,
values=st.lists(base_st, max_size=2, min_size=2),
min_size=1,
max_size=1,
)
def binary_document_operator_clause(
base_st: SearchStrategy[types.WhereDocument],
) -> SearchStrategy[types.WhereDocument]:
op: SearchStrategy[types.LogicalOperator] = st.sampled_from(["$and", "$or"])
return st.dictionaries(
keys=op,
values=st.lists(base_st, max_size=2, min_size=2),
min_size=1,
max_size=1,
)
@st.composite
def recursive_where_clause(draw: st.DrawFn, collection: Collection) -> types.Where:
base_st = where_clause(collection)
where: types.Where = draw(st.recursive(base_st, binary_operator_clause))
return where
@st.composite
def recursive_where_doc_clause(
draw: st.DrawFn, collection: Collection
) -> types.WhereDocument:
base_st = where_doc_clause(collection)
where: types.WhereDocument = draw(
st.recursive(base_st, binary_document_operator_clause)
)
return where
class Filter(TypedDict):
where: Optional[types.Where]
ids: Optional[Union[str, List[str]]]
where_document: Optional[types.WhereDocument]
@st.composite
def filters(
draw: st.DrawFn,
collection_st: st.SearchStrategy[Collection],
recordset_st: st.SearchStrategy[RecordSet],
include_all_ids: bool = False,
) -> Filter:
collection = draw(collection_st)
recordset = draw(recordset_st)
where_clause = draw(st.one_of(st.none(), recursive_where_clause(collection)))
where_document_clause = draw(
st.one_of(st.none(), recursive_where_doc_clause(collection))
)
ids: Optional[Union[List[types.ID], types.ID]]
# Record sets can be a value instead of a list of values if there is only one record
if isinstance(recordset["ids"], str):
ids = [recordset["ids"]]
else:
ids = recordset["ids"]
if not include_all_ids:
ids = draw(st.one_of(st.none(), st.lists(st.sampled_from(ids))))
if ids is not None:
# Remove duplicates since hypothesis samples with replacement
ids = list(set(ids))
# Test both the single value list and the unwrapped single value case
if ids is not None and len(ids) == 1 and draw(st.booleans()):
ids = ids[0]
return {"where": where_clause, "where_document": where_document_clause, "ids": ids}
|