Spaces:
Runtime error
Runtime error
File size: 11,294 Bytes
4a51346 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import math
from chromadb.test.property.strategies import NormalizedRecordSet, RecordSet
from typing import Callable, Optional, Tuple, Union, List, TypeVar, cast, Dict
from typing_extensions import Literal
import numpy as np
import numpy.typing as npt
from chromadb.api import types
from chromadb.api.models.Collection import Collection
from hypothesis import note
from hypothesis.errors import InvalidArgument
T = TypeVar("T")
def wrap(value: Union[T, List[T]]) -> List[T]:
"""Wrap a value in a list if it is not a list"""
if value is None:
raise InvalidArgument("value cannot be None")
elif isinstance(value, List):
return value
else:
return [value]
def wrap_all(record_set: RecordSet) -> NormalizedRecordSet:
"""Ensure that an embedding set has lists for all its values"""
embedding_list: Optional[types.Embeddings]
if record_set["embeddings"] is None:
embedding_list = None
elif isinstance(record_set["embeddings"], list):
assert record_set["embeddings"] is not None
if len(record_set["embeddings"]) > 0 and not all(
isinstance(embedding, list) for embedding in record_set["embeddings"]
):
if all(isinstance(e, (int, float)) for e in record_set["embeddings"]):
embedding_list = cast(types.Embeddings, [record_set["embeddings"]])
else:
raise InvalidArgument("an embedding must be a list of floats or ints")
else:
embedding_list = cast(types.Embeddings, record_set["embeddings"])
else:
raise InvalidArgument(
"embeddings must be a list of lists, a list of numbers, or None"
)
return {
"ids": wrap(record_set["ids"]),
"documents": wrap(record_set["documents"])
if record_set["documents"] is not None
else None,
"metadatas": wrap(record_set["metadatas"])
if record_set["metadatas"] is not None
else None,
"embeddings": embedding_list,
}
def count(collection: Collection, record_set: RecordSet) -> None:
"""The given collection count is equal to the number of embeddings"""
count = collection.count()
normalized_record_set = wrap_all(record_set)
assert count == len(normalized_record_set["ids"])
def _field_matches(
collection: Collection,
normalized_record_set: NormalizedRecordSet,
field_name: Union[Literal["documents"], Literal["metadatas"]],
) -> None:
"""
The actual embedding field is equal to the expected field
field_name: one of [documents, metadatas]
"""
result = collection.get(ids=normalized_record_set["ids"], include=[field_name])
# The test_out_of_order_ids test fails because of this in test_add.py
# Here we sort by the ids to match the input order
embedding_id_to_index = {id: i for i, id in enumerate(normalized_record_set["ids"])}
actual_field = result[field_name]
# This assert should never happen, if we include metadatas/documents it will be
# [None, None..] if there is no metadata. It will not be just None.
assert actual_field is not None
sorted_field = sorted(
enumerate(actual_field),
key=lambda index_and_field_value: embedding_id_to_index[
result["ids"][index_and_field_value[0]]
],
)
field_values = [field_value for _, field_value in sorted_field]
expected_field = normalized_record_set[field_name]
if expected_field is None:
# Since an RecordSet is the user input, we need to convert the documents to
# a List since thats what the API returns -> none per entry
expected_field = [None] * len(normalized_record_set["ids"]) # type: ignore
assert field_values == expected_field
def ids_match(collection: Collection, record_set: RecordSet) -> None:
"""The actual embedding ids is equal to the expected ids"""
normalized_record_set = wrap_all(record_set)
actual_ids = collection.get(ids=normalized_record_set["ids"], include=[])["ids"]
# The test_out_of_order_ids test fails because of this in test_add.py
# Here we sort the ids to match the input order
embedding_id_to_index = {id: i for i, id in enumerate(normalized_record_set["ids"])}
actual_ids = sorted(actual_ids, key=lambda id: embedding_id_to_index[id])
assert actual_ids == normalized_record_set["ids"]
def metadatas_match(collection: Collection, record_set: RecordSet) -> None:
"""The actual embedding metadata is equal to the expected metadata"""
normalized_record_set = wrap_all(record_set)
_field_matches(collection, normalized_record_set, "metadatas")
def documents_match(collection: Collection, record_set: RecordSet) -> None:
"""The actual embedding documents is equal to the expected documents"""
normalized_record_set = wrap_all(record_set)
_field_matches(collection, normalized_record_set, "documents")
def no_duplicates(collection: Collection) -> None:
ids = collection.get()["ids"]
assert len(ids) == len(set(ids))
# These match what the spec of hnswlib is
# This epsilon is used to prevent division by zero and the value is the same
# https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/python_bindings/bindings.cpp#L238
NORM_EPS = 1e-30
distance_functions: Dict[str, Callable[[npt.ArrayLike, npt.ArrayLike], float]] = {
"l2": lambda x, y: np.linalg.norm(x - y) ** 2, # type: ignore
"cosine": lambda x, y: 1 - np.dot(x, y) / ((np.linalg.norm(x) + NORM_EPS) * (np.linalg.norm(y) + NORM_EPS)), # type: ignore
"ip": lambda x, y: 1 - np.dot(x, y), # type: ignore
}
def _exact_distances(
query: types.Embeddings,
targets: types.Embeddings,
distance_fn: Callable[[npt.ArrayLike, npt.ArrayLike], float] = distance_functions[
"l2"
],
) -> Tuple[List[List[int]], List[List[float]]]:
"""Return the ordered indices and distances from each query to each target"""
np_query = np.array(query)
np_targets = np.array(targets)
# Compute the distance between each query and each target, using the distance function
distances = np.apply_along_axis(
lambda query: np.apply_along_axis(distance_fn, 1, np_targets, query),
1,
np_query,
)
# Sort the distances and return the indices
return np.argsort(distances).tolist(), distances.tolist()
def ann_accuracy(
collection: Collection,
record_set: RecordSet,
n_results: int = 1,
min_recall: float = 0.99,
embedding_function: Optional[types.EmbeddingFunction] = None,
) -> None:
"""Validate that the API performs nearest_neighbor searches correctly"""
normalized_record_set = wrap_all(record_set)
if len(normalized_record_set["ids"]) == 0:
return # nothing to test here
embeddings: Optional[types.Embeddings] = normalized_record_set["embeddings"]
have_embeddings = embeddings is not None and len(embeddings) > 0
if not have_embeddings:
assert embedding_function is not None
assert normalized_record_set["documents"] is not None
assert isinstance(normalized_record_set["documents"], list)
# Compute the embeddings for the documents
embeddings = embedding_function(normalized_record_set["documents"])
# l2 is the default distance function
distance_function = distance_functions["l2"]
accuracy_threshold = 1e-6
assert collection.metadata is not None
assert embeddings is not None
if "hnsw:space" in collection.metadata:
space = collection.metadata["hnsw:space"]
# TODO: ip and cosine are numerically unstable in HNSW.
# The higher the dimensionality, the more noise is introduced, since each float element
# of the vector has noise added, which is then subsequently included in all normalization calculations.
# This means that higher dimensions will have more noise, and thus more error.
assert all(isinstance(e, list) for e in embeddings)
dim = len(embeddings[0])
accuracy_threshold = accuracy_threshold * math.pow(10, int(math.log10(dim)))
if space == "cosine":
distance_function = distance_functions["cosine"]
if space == "ip":
distance_function = distance_functions["ip"]
# Perform exact distance computation
indices, distances = _exact_distances(
embeddings, embeddings, distance_fn=distance_function
)
query_results = collection.query(
query_embeddings=normalized_record_set["embeddings"],
query_texts=normalized_record_set["documents"] if not have_embeddings else None,
n_results=n_results,
include=["embeddings", "documents", "metadatas", "distances"],
)
assert query_results["distances"] is not None
assert query_results["documents"] is not None
assert query_results["metadatas"] is not None
assert query_results["embeddings"] is not None
# Dict of ids to indices
id_to_index = {id: i for i, id in enumerate(normalized_record_set["ids"])}
missing = 0
for i, (indices_i, distances_i) in enumerate(zip(indices, distances)):
expected_ids = np.array(normalized_record_set["ids"])[indices_i[:n_results]]
missing += len(set(expected_ids) - set(query_results["ids"][i]))
# For each id in the query results, find the index in the embeddings set
# and assert that the embeddings are the same
for j, id in enumerate(query_results["ids"][i]):
# This may be because the true nth nearest neighbor didn't get returned by the ANN query
unexpected_id = id not in expected_ids
index = id_to_index[id]
correct_distance = np.allclose(
distances_i[index],
query_results["distances"][i][j],
atol=accuracy_threshold,
)
if unexpected_id:
# If the ID is unexpcted, but the distance is correct, then we
# have a duplicate in the data. In this case, we should not reduce recall.
if correct_distance:
missing -= 1
else:
continue
else:
assert correct_distance
assert np.allclose(embeddings[index], query_results["embeddings"][i][j])
if normalized_record_set["documents"] is not None:
assert (
normalized_record_set["documents"][index]
== query_results["documents"][i][j]
)
if normalized_record_set["metadatas"] is not None:
assert (
normalized_record_set["metadatas"][index]
== query_results["metadatas"][i][j]
)
size = len(normalized_record_set["ids"])
recall = (size - missing) / size
try:
note(
f"recall: {recall}, missing {missing} out of {size}, accuracy threshold {accuracy_threshold}"
)
except InvalidArgument:
pass # it's ok if we're running outside hypothesis
assert recall >= min_recall
# Ensure that the query results are sorted by distance
for distance_result in query_results["distances"]:
assert np.allclose(np.sort(distance_result), distance_result)
|