File size: 11,073 Bytes
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import pytest
import logging
import hypothesis.strategies as st
from typing import Set, cast, Union, DefaultDict
from dataclasses import dataclass
from chromadb.api.types import ID, Include, IDs
import chromadb.errors as errors
from chromadb.api import API
from chromadb.api.models.Collection import Collection
import chromadb.test.property.strategies as strategies
from hypothesis.stateful import (
    Bundle,
    RuleBasedStateMachine,
    MultipleResults,
    rule,
    initialize,
    precondition,
    consumes,
    run_state_machine_as_test,
    multiple,
    invariant,
)
from collections import defaultdict
import chromadb.test.property.invariants as invariants
import numpy as np


traces: DefaultDict[str, int] = defaultdict(lambda: 0)


def trace(key: str) -> None:
    global traces
    traces[key] += 1


def print_traces() -> None:
    global traces
    for key, value in traces.items():
        print(f"{key}: {value}")


dtype_shared_st: st.SearchStrategy[
    Union[np.float16, np.float32, np.float64]
] = st.shared(st.sampled_from(strategies.float_types), key="dtype")

dimension_shared_st: st.SearchStrategy[int] = st.shared(
    st.integers(min_value=2, max_value=2048), key="dimension"
)


@dataclass
class EmbeddingStateMachineStates:
    initialize = "initialize"
    add_embeddings = "add_embeddings"
    delete_by_ids = "delete_by_ids"
    update_embeddings = "update_embeddings"
    upsert_embeddings = "upsert_embeddings"


collection_st = st.shared(strategies.collections(with_hnsw_params=True), key="coll")


class EmbeddingStateMachine(RuleBasedStateMachine):
    collection: Collection
    embedding_ids: Bundle[ID] = Bundle("embedding_ids")

    def __init__(self, api: API):
        super().__init__()
        self.api = api
        self._rules_strategy = strategies.DeterministicRuleStrategy(self)  # type: ignore

    @initialize(collection=collection_st)  # type: ignore
    def initialize(self, collection: strategies.Collection):
        self.api.reset()
        self.collection = self.api.create_collection(
            name=collection.name,
            metadata=collection.metadata,
            embedding_function=collection.embedding_function,
        )
        self.embedding_function = collection.embedding_function
        trace("init")
        self.on_state_change(EmbeddingStateMachineStates.initialize)

        self.record_set_state = strategies.StateMachineRecordSet(
            ids=[], metadatas=[], documents=[], embeddings=[]
        )

    @rule(target=embedding_ids, record_set=strategies.recordsets(collection_st))
    def add_embeddings(self, record_set: strategies.RecordSet) -> MultipleResults[ID]:
        trace("add_embeddings")
        self.on_state_change(EmbeddingStateMachineStates.add_embeddings)

        normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
            record_set
        )

        if len(normalized_record_set["ids"]) > 0:
            trace("add_more_embeddings")

        if set(normalized_record_set["ids"]).intersection(
            set(self.record_set_state["ids"])
        ):
            with pytest.raises(errors.IDAlreadyExistsError):
                self.collection.add(**normalized_record_set)
            return multiple()
        else:
            self.collection.add(**normalized_record_set)
            self._upsert_embeddings(cast(strategies.RecordSet, normalized_record_set))
            return multiple(*normalized_record_set["ids"])

    @precondition(lambda self: len(self.record_set_state["ids"]) > 20)
    @rule(ids=st.lists(consumes(embedding_ids), min_size=1, max_size=20))
    def delete_by_ids(self, ids: IDs) -> None:
        trace("remove embeddings")
        self.on_state_change(EmbeddingStateMachineStates.delete_by_ids)
        indices_to_remove = [self.record_set_state["ids"].index(id) for id in ids]

        self.collection.delete(ids=ids)
        self._remove_embeddings(set(indices_to_remove))

    # Removing the precondition causes the tests to frequently fail as "unsatisfiable"
    # Using a value < 5 causes retries and lowers the number of valid samples
    @precondition(lambda self: len(self.record_set_state["ids"]) >= 5)
    @rule(
        record_set=strategies.recordsets(
            collection_strategy=collection_st,
            id_strategy=embedding_ids,
            min_size=1,
            max_size=5,
        )
    )
    def update_embeddings(self, record_set: strategies.RecordSet) -> None:
        trace("update embeddings")
        self.on_state_change(EmbeddingStateMachineStates.update_embeddings)
        self.collection.update(**record_set)
        self._upsert_embeddings(record_set)

    # Using a value < 3 causes more retries and lowers the number of valid samples
    @precondition(lambda self: len(self.record_set_state["ids"]) >= 3)
    @rule(
        record_set=strategies.recordsets(
            collection_strategy=collection_st,
            id_strategy=st.one_of(embedding_ids, strategies.safe_text),
            min_size=1,
            max_size=5,
        )
    )
    def upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
        trace("upsert embeddings")
        self.on_state_change(EmbeddingStateMachineStates.upsert_embeddings)
        self.collection.upsert(**record_set)
        self._upsert_embeddings(record_set)

    @invariant()
    def count(self) -> None:
        invariants.count(
            self.collection, cast(strategies.RecordSet, self.record_set_state)
        )

    @invariant()
    def no_duplicates(self) -> None:
        invariants.no_duplicates(self.collection)

    @invariant()
    def ann_accuracy(self) -> None:
        invariants.ann_accuracy(
            collection=self.collection,
            record_set=cast(strategies.RecordSet, self.record_set_state),
            min_recall=0.95,
            embedding_function=self.embedding_function,
        )

    def _upsert_embeddings(self, record_set: strategies.RecordSet) -> None:
        normalized_record_set: strategies.NormalizedRecordSet = invariants.wrap_all(
            record_set
        )
        for idx, id in enumerate(normalized_record_set["ids"]):
            # Update path
            if id in self.record_set_state["ids"]:
                target_idx = self.record_set_state["ids"].index(id)
                if normalized_record_set["embeddings"] is not None:
                    self.record_set_state["embeddings"][
                        target_idx
                    ] = normalized_record_set["embeddings"][idx]
                else:
                    assert normalized_record_set["documents"] is not None
                    assert self.embedding_function is not None
                    self.record_set_state["embeddings"][
                        target_idx
                    ] = self.embedding_function(
                        [normalized_record_set["documents"][idx]]
                    )[
                        0
                    ]
                if normalized_record_set["metadatas"] is not None:
                    self.record_set_state["metadatas"][
                        target_idx
                    ] = normalized_record_set["metadatas"][idx]
                if normalized_record_set["documents"] is not None:
                    self.record_set_state["documents"][
                        target_idx
                    ] = normalized_record_set["documents"][idx]
            else:
                # Add path
                self.record_set_state["ids"].append(id)
                if normalized_record_set["embeddings"] is not None:
                    self.record_set_state["embeddings"].append(
                        normalized_record_set["embeddings"][idx]
                    )
                else:
                    assert self.embedding_function is not None
                    assert normalized_record_set["documents"] is not None
                    self.record_set_state["embeddings"].append(
                        self.embedding_function(
                            [normalized_record_set["documents"][idx]]
                        )[0]
                    )
                if normalized_record_set["metadatas"] is not None:
                    self.record_set_state["metadatas"].append(
                        normalized_record_set["metadatas"][idx]
                    )
                else:
                    self.record_set_state["metadatas"].append(None)
                if normalized_record_set["documents"] is not None:
                    self.record_set_state["documents"].append(
                        normalized_record_set["documents"][idx]
                    )
                else:
                    self.record_set_state["documents"].append(None)

    def _remove_embeddings(self, indices_to_remove: Set[int]) -> None:
        indices_list = list(indices_to_remove)
        indices_list.sort(reverse=True)

        for i in indices_list:
            del self.record_set_state["ids"][i]
            del self.record_set_state["embeddings"][i]
            del self.record_set_state["metadatas"][i]
            del self.record_set_state["documents"][i]

    def on_state_change(self, new_state: str) -> None:
        pass


def test_embeddings_state(caplog: pytest.LogCaptureFixture, api: API) -> None:
    caplog.set_level(logging.ERROR)
    run_state_machine_as_test(lambda: EmbeddingStateMachine(api))  # type: ignore
    print_traces()


def test_multi_add(api: API) -> None:
    api.reset()
    coll = api.create_collection(name="foo")
    coll.add(ids=["a"], embeddings=[[0.0]])
    assert coll.count() == 1

    with pytest.raises(errors.IDAlreadyExistsError):
        coll.add(ids=["a"], embeddings=[[0.0]])

    assert coll.count() == 1

    results = coll.get()
    assert results["ids"] == ["a"]

    coll.delete(ids=["a"])
    assert coll.count() == 0


def test_dup_add(api: API) -> None:
    api.reset()
    coll = api.create_collection(name="foo")
    with pytest.raises(errors.DuplicateIDError):
        coll.add(ids=["a", "a"], embeddings=[[0.0], [1.1]])
    with pytest.raises(errors.DuplicateIDError):
        coll.upsert(ids=["a", "a"], embeddings=[[0.0], [1.1]])


def test_query_without_add(api: API) -> None:
    api.reset()
    coll = api.create_collection(name="foo")
    fields: Include = ["documents", "metadatas", "embeddings", "distances"]
    N = np.random.randint(1, 2000)
    K = np.random.randint(1, 100)
    results = coll.query(
        query_embeddings=np.random.random((N, K)).tolist(), include=fields
    )
    for field in fields:
        field_results = results[field]
        assert field_results is not None
        assert all([len(result) == 0 for result in field_results])


# TODO: Use SQL escaping correctly internally
@pytest.mark.xfail(reason="We don't properly escape SQL internally, causing problems")
def test_escape_chars_in_ids(api: API) -> None:
    api.reset()
    id = "\x1f"
    coll = api.create_collection(name="foo")
    coll.add(ids=[id], embeddings=[[0.0]])
    assert coll.count() == 1
    coll.delete(ids=[id])
    assert coll.count() == 0